
Project Coordination:
Fraunhofer Institute IAO

H2020-SCC-2014-2015/H2020-SCC-2014:
’Smart Cities and Communities solutions integrating energy, transport, ICT

sectors through lighthouse (large scale demonstration - first of the kind)
projects’

Collaborative Project — GRANT AGREEMENT No. 646578

Ref. Ares(2018)672402 - 05/02/2018

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 1

Contents

Executive Summary 5

Revision History 6

Conventions 7

1 Introduction 10
1.1 Motivation and objectives . 10
1.2 Context and orientation . 11

1.2.1 Project-specific conditions . 11
1.3 Report overview . 12

1.3.1 Report structure . 12
1.3.2 Who should read this report? . 13

2 Review of literature and related works 14
2.1 Distributed computing . 14

2.1.1 Fault Tolerance . 15
2.1.2 Distributed System Model . 16
2.1.3 Quorums . 17

2.2 ICT in other smart city projects . 17
2.2.1 MK:Smart . 17
2.2.2 Oulo smart city traffic pilot . 18
2.2.3 CityPulse . 18

2.3 Other relevant projects . 19
2.3.1 CKAN . 19
2.3.2 FIWARE . 19
2.3.3 New York Times and Apache Kafka 20

2.4 Review Summary . 21

3 Architecture 23
3.1 Architecture Roadmap . 23

3.1.1 Purpose and Scope . 23
3.1.2 Organization . 23
3.1.3 Stakeholder Representation . 24
3.1.4 Viewpoint Definitions . 24

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 2

3.1.4.1 Viewpoint defintion: Implementation units decomposition
viewpoint . 24

3.2 Architecture Background . 26
3.2.1 Problem Background . 26

3.2.1.1 System Overview . 27
3.2.1.2 Goals and Context . 28
3.2.1.3 Significant Driving Requirements 28

3.2.2 Solution Background . 29
3.2.2.1 Architectural Approaches 29
3.2.2.2 Requirements Coverage 30

3.3 View . 30
3.3.1 Implementation Units Decomposition View 30

3.3.1.1 View Description . 30
3.3.1.2 Primary presentation . 30
3.3.1.3 Context diagram . 30

3.4 Architecture Summary . 32

4 Design 33
4.1 Design overview . 33
4.2 Data Acquisition . 34

4.2.1 Adaptors . 34
4.2.2 Queueing and Load Balancing . 34

4.3 Data Ingestion . 36
4.4 Data Storage . 36
4.5 Data Access . 37

4.5.1 Internal Access . 37
4.5.2 External Access . 38

4.6 Data Processing . 38
4.6.1 Exploratory Data Analysis Tools 39
4.6.2 Batch Processing Tools . 39
4.6.3 Modelling . 39

4.7 Design Summary . 40

5 Implementation 41
5.1 Pipeline and Components Overview . 41
5.2 Implementation division 1: Data collection framework 44

5.2.1 Data intake form . 44
5.2.2 Adaptors . 44

5.2.2.1 CDPAdaptor . 45
5.2.3 Queueing and load balancing . 51

5.2.3.1 Parameters affecting fault tolerance 52
5.2.3.2 Logstash parameters relating to Kafka 53
5.2.3.3 Load balancing the publishing adaptors 54
5.2.3.4 Load balancing the subscribing Logstash nodes 54

5.2.4 Data Ingestion . 54
5.2.4.1 Sanitizing . 55

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 3

5.2.4.2 Filtering . 55
5.2.5 Data Storage . 55

5.2.5.1 Indexing . 55
5.2.5.2 Object Storage . 56
5.2.5.3 Monitoring . 56

5.2.6 Data Access . 57
5.3 Implementation division 2: Data processing framework 57

5.3.1 Exploratory Data Analysis Tools 57
5.3.2 Batch Processing and Modelling Tools 58

5.4 Implementation Summary . 59

6 Deployment 60
6.1 Overview . 60
6.2 Methodology and technology . 61

6.2.1 Methodology . 61
6.2.2 Technologies . 61

6.3 Local virtual machine environment with Vagrant and Virtualbox 62
6.3.1 Deployment to single VM locally 62

6.3.1.1 Key files . 63
6.3.1.2 Operations to enact the deployment 66
6.3.1.3 Notes on context . 66

6.3.2 Deployment to multiple VMs locally 66
6.3.2.1 Key files . 67
6.3.2.2 Operations to enact the deployment 70
6.3.2.3 Notes on context . 71

6.4 Deployments to cloud (Cloud virtual machine environment with OpenStack) 71
6.4.1 Deployment to single VM on cloud 71

6.4.1.1 Key files . 72
6.4.1.2 Operations to enact the deployment 72
6.4.1.3 Notes on context . 76

6.4.2 Deployment to multiple VMs on cloud 77
6.4.2.1 Key files . 77
6.4.2.2 Operations to enact the deployment 78
6.4.2.3 Notes on context . 79

6.5 Alternative deployment schemes . 80
6.5.1 Ideas for possible alternative deployment schemes 81

7 Replication Guide 82
7.1 Overview . 82
7.2 Demo implementation with vagrant and single node 82
7.3 Distributed on hardware . 83
7.4 Cloud hosted . 83
7.5 New data sources, new adaptors . 84

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 4

8 Data analytics use case: Traffic flow analysis 85
8.1 Implementation of the graph . 86
8.2 Technical steps in preparing the analysis 87

8.2.1 Transformations on time-related DataFrame columns 88
8.3 Defining and running an algorithm to find the vertices and edges of the

subgraph . 88
8.4 Summary of Analytics Use Case . 89

9 Conclusion 91

Glossary 93

Acronyms 94

Bibliography 94

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 5

Executive Summary

University of Stavanger (UiS) has developed and implemented two information and
communications technology (ICT) modules that enable cloud services for big data from
smart cities. This module implementation was undertaken in the context of the Horizon
2020 project Triangulum, funded by the European Union (EU) (Grant Agreement number:
646578). The module implementation was adapted to the situational requirements of
the project and its consortium of partners. At the same time, the UiS modules were
implemented according to requirements mentioned in pages 18− 20 of the project grant
agreement mandate , to harness modern ICT within a big data paradigm.

Furthermore, in accordance with the overall intentions of Triangulum, to develop in
the Lighthouse Cities technological solutions that can be taken up by the Follower Cities,
the UiS module implementation was undertaken with a strong emphasis on open-source
technologies as the components of the software infrastructure system that the module
implementation represents.

This report is intended as a technical document for the deliverable D2.2 to support
future replication and further development of the module implementation and so keeps
being updated. Some chapters provide higher-level perspectives, intended for a less
technical audience. For more detail on who should read different parts of this report, see
Sec. 1.3.2.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 6

Revision History

Initial report, version 1.01.

2nd February 2018: First version of the UiS module implementation technical report in
the Triangulum project.

Initial report, version 1.00.

30th January 2018: First version of the UiS module implementation technical report in
the Triangulum project.

Written by Trond Linjordet (UiS), with contributions from Aryan TaheriMonfared (UiS),
Julian Minde (UiS), Russel Wolf (UiS), Aida Mehdipourpirbazari (UiS),
Faraz Barzideh (UiS), Mina Farmanbar (UiS),
Nejm Saadallah (International Research Institute of Stavanger (IRIS)), and
Rui Esteves (IRIS).

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 7

Conventions

This report uses the following conventions:

Glossary terms

The first time a term with a glossary entry is used in this report, the term is displayed
in a san serif font. For example, a sentence including such formatting of a special term
indicates that “special term” can be found with a brief description in the Glossary of this
report.

Listings

This report contains listings such as this, where the contents of a program or script are
given, or the commands used in the command-line interface (CLI):

Listing 0.0.1: Commands or program, /file/path/filename

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

In the body of the text and listing titles, references to parts of code, to CLI commands,
file paths, or file names, are made by writing in the typewriter font.

Notation and terminology conventions

Naming conventions

The Triangulum modules are given both a three-digit identifier, and a name. The module
names have been updated during the project to reflect growing clarity of purpose over
the course of the development of modules, but the numeric module identifier can in many
cases help to map the module to its original corresponding subtask.

The module identifier is constructed according to the following steps: The first digit,

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 8

X, is determined by the Lighthouse City, so that

X =

3 if the module belongs to Manchester,

4 if the module belongs to Eindhoven, or

5 if the module belongs to Stavanger.

The second digit, Y , is determined by the primary impact domain, so that

Y =

2 if the module impacts Energy,

3 if the module impacts Mobility, or

4 if the module impacts ICT.

Finally, the third digit, Z, is left to iterate up from 1, to easily distinguish modules
from the same Lighthouse City with the same primary impact domain. Where possible,
Z is chosen to match the numbering of the single corresponding subtask in the Grant
Agreement. Likewise, the conventions for X and Y support this aim for matching with
the Grant Agreement, while providing an explicitly systematic mapping.

Thus, the “topic” (used for managing the data, see Ch. 5) for a module-relevant data
source being collected to the cloud data platform is constructed according to the pattern
mXYZ-datasource-subset. Sometimes, this pattern is referenced, especially in Ch. 5, as
mXYZ-*, for brevity.

For data sources that are not directly related to Triangulum modules, but which may
be relevant to collect to provide a basis for comparison, or for other purposes, the following
alternative pattern is suggested: xXYZ-datasource-subset. Here the lowercase x is left as
literal, replacing m, while the capital X should follow the above convention as for modules.

The qualitative impacts of each module can be evidenced by impact indicators, which
quantify the impacts based on module-relevant data. Typically (in practice exclusively),
this means data generated as a matter of course in the module implementation or the
operations of the module once implemented. Each impact indicator is given a numeric
identifier, consisting of six digits, consisting of the pattern XYZQQQ, where QQQ iterates
from 1 (i.e. 001) according to however many impact indicators can be defined for the
module. Where a single impact indicator has multiple variants, the impact indicator
identifier may be suffixed with a, b, c, etcetera.

Terminology within the report

This section discusses some of the terminology which may be unique or nuanced within
the present report.

In the report, the software systems that were developed as concrete, operational
prototypes are referred to as the module implementation. This refers to both the UiS
modules in the Triangulum project.

The software systems in the module implementation consist to a large extent of
configurations and interconnections of pre-existing technologies. These have been chosen
to fulfill functional requirments identified in Ch. 3. The overall system is said to consist of
components. These in turn may be operational as deployments to dedicated clusters that
together serve some function within the larger system of the module implementation.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 9

The pre-existing and externally developed technologies used in the present work are
discussed in terms of their proper nouns, which are capitalized in the prose. For example,
the report describes and discusses Elasticsearch, Python, and Systemd. However, code, file
names, and file paths, even when referring to the technologies’ proper names, are always
typeset in the typewriter font.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 10

Chapter 1

Introduction

1.1 Motivation and objectives

The implementation of modules at UiS, Module 542 Data analytics toolkit and Module 544
Cloud data platform, was motivated by a need for a standard ICT solution for documenting
and analysing the impacts of all modules in the Triangulum project. An additional
motivation was the opportunity for undertaking more advanced analyses of the data
collected to uncover possible insights or applications.

ICTs are central to implementing a smart city. Everyday tools and appliances are
now produced with electronics that provide built-in opportunities for connectivity and
coordination. This Internet of Things (IoT) trend can only be expected to become more
widespread going forward. These technologies produce data both of internal functions and
to inform various types of users and external devices of relevant facts. The multitude of
data-producing objects represent an untapped potential, in that each object may only
represent a single element in a complex, dynamic system. For example, a single geolocation
device may provide movements of that device over time, but the set of comparable
geolocation devices may provide valuable insights in the underlying dynamics of the device
population.

In order to capture such data to enable insightful analysis, a system is required that
can correctly ingest, reliably store, and intelligently process the data. A cloud computing
solution can address all these criteria. Furthermore, a cloud computing solution based
on locally situated hardware may in principle enable greater security and control than
outsourcing cloud computing solutions to overseas commercial vendors. Finally, an open-
source, commodity hardware cloud computing solution lowers the economic threshold
(i.e. financial cost) to adopt this solution among Follower Cities and others who wish to
replicate the present work in part or in full. The commodity hardware and open-source
approach also enable minimal cost while scaling the implementation to the needs of the
replicating party.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 11

1.2 Context and orientation

The UiS module implementation has been guided by certain orienting principles, as well
as the practical context in which the module implementation has occurred.

The implementation has harnessed modern cloud computing, big data, and IoT
paradigms to serve the Triangulum smart city project and its overarching goal of repli-
cability by developing with open-source, community-supported software for scalable and
modular instantiation on commodity hardware.

By choosing to focus on *NIX (Unix-like) technologies for components, the UiS module
implementation simplified the task of finding technologies that are both open-source and
community-supported, as well as likely compatible with each other and the underlying
computing environment.

Scalability, modularity, and commodity hardware go together in that the aforemen-
tioned modern paradigms share the well-supported premise that the generation, storage,
and manipulation of data today occur in ways that are distributed on multiple devices.
Thus, the economical approach to big data — as opposed to building custom, dedicated
supercomputers — is to distribute individual large computing tasks among multiple
commodity-level computers. This is discussed further in Sec. 2.1.

In addition, the context of the module implementation includes the parallel implemen-
tation at UiS, outside Triangulum, of the appropriate hardware infrastructure to support
the software infrastructure implementation discussed in this report. The modules were
implemented on a cloud computing platform, the CIPSI Computing Platform (CCP),
operating at the University of Stavanger data centre. CCP thus constitutes a major aspect
of the context for the module implementation within Triangulum.

Nevertheless, the implemented modules are compatible with any equivalent alternative
cloud computing platform that can provision the same type of resources.

The modules presented in this report were developed to an operational prototype,
or proof-of-concept, level of maturity. Further development would be required for the
system to be appropriate for an enterprise-scale production level of operation. Such further
development may well be appropriate in the context of an open source collaboration on
the systems presented in this report.

1.2.1 Project-specific conditions

Triangulum created some specific starting conditions that affected the implementation of
UiS modules, and the progression of the project as a whole also affected the UiS modules
in a number of ways.

First of all, the Module 544 Cloud data platform (Deliverable 2.2) was intended to
support Work Package 2 (WP2) reporting, by collecting data regarding module imple-
mentations throughout the Triangulum consortium. Note that modules in the context
of Triangulum refers to the specific technological solutions implemented as project deliv-
erables by the various partners and linked third parties in the Triangulum consortium.
Because of this, the parts of the UiS module implementation in this report are referred to
as subsystems or components.

The data collected must be used to calculate quantities that in turn support WP2

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 12

reporting. Since WP2 undertakes to report on the qualitative impact of the various modules
implemented in Triangulum, the function of Module 544 relative to WP2 is to both collect
the supporting data and calculate from these the impact indicators that quantify the
impact of the various modules in Triangulum. In effect, the systems implemented as
the Data processing framework within the cloud data platform overlap with the systems
implemented as Module 542.

Each data source encountered was unique, and required the development of a custom
adaptor to connect the specific data source to the general Data collection framework of
the cloud data platform. This work required intensive and iterative liaising with technical
personnel at the relevant data provider.

Under the Grant Agreement, any partner or linked third-party is permitted to withhold
data from the aformentioned collection, if this withholding is done to protect either the
privacy of individuals, or due to proprietary commercial concerns on the part of the data
provider.

The implementation was by necessity prioritized according to the data availability.
While the legalities and liabilities associated with data affected by concerns for privacy

and propriety present a significant challenge in handling data across organizations, the
UiS module implementation successfully negotiated these issues with respect to some data
sources.

However, out of concern for the uncertainty regarding openness of some of these data
sources, and due to limited server capacity on the part of the data providers, the full
implementation details of the corresponding adaptors are omitted from this report to
prevent inadvertent overload on those services.

1.3 Report overview

1.3.1 Report structure

Chapter 1 has introduced the objectives of the report and the module development that
this report documents, as well as the situational context. Chapter 2 reviews information
from relevant fields of inquiry, including relevant technologies considered for the module
implementation. Chapter 3 describes the requirements of the system and the resulting
architecture. Chapter 4 develops the design of the module implementation. Chapter 5
provides details on the implementation of the software infrastructure. Chapter 6 goes
on to present the deployments of the implementation as increasingly complex iterations.
Chapter 7 steps back to provide a practical overview of how the module implementation
can be deployed by replicating Follower Cities, or other parties wishing to replicate the
deployments or further develop the module implementation. Chapter 8 discusses the use
case of exploratory data analysis undertaken on bus data towards modelling local traffic
and developing a bus arrival time prognosis service. Finally, Ch. 9 concludes the report
with an overall discussion of the module implementation and possible future directions.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 13

1.3.2 Who should read this report?

This report is written with the expectation that several categories of readers may be
interested. While the previous section (Sec. 1.3.1) gives an overview of the topics discussed,
the organization of the report merits a further explanation to support the readership.
Business people, administrative personnel, and laymen may find most of the chapters
informative and interesting based on the topics as explained in Sec. 1.3.1. However, Ch. 5,
Ch. 6, and Ch. 8 are written with an expectation that the readership has some familiarity
with Linux, Bash (Bourne-Again Shell), and Python, as well as a basic understanding of
computer science. This expectation reflects the necessary level of technical expertise to
meaningfully engage with the topics described. Chapter 7 contains step-by-step instructions
that may be used with a less rigorous requirement regarding technical background, although
some is certainly still expected.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 14

Chapter 2

Review of literature and related
works

This chapter provides background for the module implementation presented in this report,
beyond the Triangulum project. The background will provide a basis for comparison, and
for the reasoning about the UiS module implementation presented in subsequent chapters.

This background includes a cursory overview of the topic distributed computing, a highly
relevant field of study within computer science, in Sec. 2.1. Furthermore, a non-exhaustive
survey of selected projects with relevant ICT implementations, especially those related to
scalable data infrastructures, is presented:

Smart city projects other than Triangulum with relevant ICT components are discussed
in Sec. 2.2. Projects which are not smart city projects but have used relevant ICT
components are described in Sec. 2.3.

The chapter concludes with a preliminary discussion of the survey and the implications
for the UiS module implementation in Sec. 2.4.

2.1 Distributed computing

This section describes briefly the field of distributed computing, which concerns itself with
distributed systems. This is highly relevant to the UiS module implementation, since
the modules are all intended to reflect the underlying paradigms of big data and cloud
computing, which typically rely on technologies based on distributed computing. The IoT
paradigm aligns with the aforementioned paradigms, and hence distributed computing, in
that IoT devices can generate big data that are typically managed with cloud computing.

A distributed system can be defined [1] as a collection of processes that collaborate
in order to offer a certain service to another system or end-user. The collaboration is
realized by so-called distributed algorithms. These algorithms aim at solving the agreement
problem with respect to distributed processes. Distributed algorithms therefore assume
computational environments that enable operations on concurrency, which requires —
among other attributes — synchronization and consistency. Since the individual processes
that make up the distributed collaborative process will realistically fail with some frequency,
distributed algorithms are designed to handle process failures with some strategy. Such
strategies must assume a failure model, but different distributed algorithms may assume

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 15

different failure models. In practice, failures models are typically stochastic.
Distributed algorithms are devised to satisfy two main classes of required properties:

safety and liveness properties. A safety property is a property that must never be violated
during the distributed process. A liveness property is a property that the processes running
the distributed algorithm must always be able to eventually achieve. [1]

An algorithm property is said to be safe if is guaranteed by the algorithm that the
distributed process will never enter a violated state with respect to that property. An
algorithm property is said to be live if the algorithms guarantees that the distributed
process will always advance the system toward a desired state with respect to that property.

For example, the Paxos algorithm [2] is aimed to solve the agreement problem and
guarantees safety, but not liveness with respect to the state (agreement) that Paxos is
intended to achieve.

2.1.1 Fault Tolerance

Fault tolerance, as the term suggests, is the ability of a system to tolerate faults, or failures.
A fault or failure can be defined as the event that a process deviates from the algorithm.
[1] In distributed computing, fault tolerance means that individual processes can fail while
the overall distributed process continues to operate correctly to some acceptable extent.
The expectations about what constitutes an acceptable level of functioning after some
failure have been developed within the topic dependable computing.

Dependable computing addresses the following major system properties in pursuit of
fault tolerance [3]:

• Availability: Availability is a property that defines the ability of a system to
perform its function whenever needed. Availability is typically quantified by the
probability that the system under consideration is available at any particular point
in time.

• Reliability: Reliability is a property that defines the ability of a system to continu-
ously perform its function during a time interval. Reliability is typically quantified
by the mean interval between failures.

• Safety: Safety in its general sense, is the ability of a system to guaranty that
nothing wrong will happen. Safety is a property that is much needed in Critical
Systems [4], such as nuclear plants, or high pressure control process plants. Fail-safe
mechanisms exemplify means that ensure this property. Note that this definition
does not contradict the mathematical definition of Safety discussed above, which is
a guarantee that a system will never enter an undesired state.

• Maintainability: Maintainability is a property that defines the ability to repair,
upgrade, or even modify a system without compromising Safety, Availability and
Reliability. This is clearly very challenging, but also a highly desirable property.
Maintainability enables a system to continue running while being modified.

• Recoverability (resilience): Recoverability is the ability of the the system to
return to a functional and operational state after failure.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 16

2.1.2 Distributed System Model

Note that a distributed algorithm not only assumes a failure model, but also a distributed
system model, which underlies and affects the design of the algorithm itself [1]. Influential
aspects of the distributed system model include assumptions about reliability of links
between processes, system synchrony, failure severity, and stochasticity (or not) [1].

A distributed system model constitutes a framework for studying and developing
distributed systems. The framework consists of three abstractions: a process abstraction,
a communication abstraction, and a failure detection abstraction.

A process abstraction defines the unit that performs a computation as described by a
distributed algorithm.

A communication abstraction (or link abstraction) is used to represent the network
component of the distributed system.

Distributed algorithms may rely on an ability to detect failures among the constituent
processes. This is addressed in the distributed system model by a form of failure detection
abstraction. Because it is almost impossible to distinguish between process failure and
communication failure [1], most practical distributed algorithms assume no communication
failures and attempt to determine whether a process has failed. Under the assumption
that communication failure does not occur, a failing process can be detected based on
expected behavior. This expectation is a reflection of the failure models assumed by the
distributed algorithm.

One failure model abstraction is to consider five levels of failure models with their
respective simplified failure definitions [1]:

1. Crash: A process stops executing steps of the distributed algorithm.

2. Omission: A process fails to communicate appropriately with another process.

3. Crash with recovery: A process capable of recovering itself after a crash fails to
do so appropriately, by either (a) not recovering a crash, or (b) looping infinitely
through a cycle of crash and recovery.

4. Eavesdropping: Adverserial processes outside the distributed system inappropri-
ately gain information about the internal processes.

5. Arbitrary: A process deviates from the distributed algorithm in any conceivable
way. Such failures are also called Byzantine faults and encompass all unknown or
unpredictable failures.

For example, a process that does not respond after a given timeout will be considered
crashed. A more challenging problem is when a process does respond, but in a malicious
manner. Here notions of identity (with cryptography), or byzantine fault tolerance become
important.

The assumed process failure models make a significant difference between various
distributed algorithms, with respect to their practical applications and their properties in
terms of safety and liveness. The strongest class of distributed algorithm would be fault
tolerant with respect to Byzantine failures.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 17

2.1.3 Quorums

A process executes a computation given by a distributed algorithm and can fail in different
ways as discussed above.

A satisfactory distributed algorithm always reaches distributed agreement, and is never
fooled by faulty processes. Fooling in this context means assuming distributed agreement
when in fact distributed agreement is not reached.

The main tool for designing distributed algorithms is called quorum. A quorum is a set
of processes that hold a sufficient majority of the distributed system with respect to some
task or property. In particular, a quorum is important because distributed algorithms
rely on quorums to achieve distributed agreement. If f is the maximum number of faulty
processes that the system can tolerate and N is the total number of processes (including
the faulty process), the number of processes required for a quorum can be defined based
on the failure model of the distributed algorithm.

For a crash fault-tolerant distributed algorithm, a quorum is a set of N+1
2

or more
processes. Thus, if f < N

2
, the distributed system is guaranteed at least one quorum.

In comparison, a Byzantine quorum is any set of N+f+1
2

or more processes. So in a

quorum of N+f+1
2

there are up to N+f+1
2
− f correct processes (non-faulty processes). For

Byzantine quorums, we furthermore have that : N − f > N+f
2
→ N > 3f . For example,

to tolerate 1 faulty process, a Byzantine fault-tolerant distributed system requires at least
3 processes. Likewise, to tolerate 2 faulty processes a distributed system would require at
least 6 processes. [1]

This summary has provided a superficial overview of the type of theoretical considera-
tions that affect the development of a computing system with distributed components, a
category to which both the UiS module implementations belong.

2.2 ICT in other smart city projects

This section discusses ICT in smart city projects besides Triangulum, although the publicly
available information on these projects is limited on a technical level.

A number of smart city projects have been undertaken around the world, and a number
of these appear in principle to contend with ICT challenges that are similar to those of
the UiS module implementation.

The following projects were deemed noteworthy in terms of their relevance to the UiS
module implementation, and were investigated more closely, with details in their respective
subsections: MK:Smart, Oulu Smart City pilot, and CityPulse.

2.2.1 MK:Smart

The city of Milton Keynes in the UK is developing a hub (datahub.mksmart.org), which
includes data about energy and water consumption, transport data, data acquired through
satellite technology, social and economic datasets, and crowdsourced data from social
media or specialized applications.

Like the UiS module implementation in Triangulum, MK hub is planned to support
the creation of analytics applications and services. The scope of Smart Data is wider in

GRANT AGREEMENT No. 646578

datahub.mksmart.org

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 18

comparison to Triangulum, as it emphasizes other areas (which in Triangulum would be
called impact domains) such as water. MK: Smart Data used Open Digital Rights Language
to represent and manipulate data policies, rules to represent permissions, prohibitions,
and duties with respect to the use, re-use and re-distribution of datasets.

Based on its primary and affiliated websites, MK smart and its MK data hub appear to
mainly collect and analyze static, historical data sets. The architecture of MK Data hub
is described in detail by Mathieu d’Aquin et al. [5] Unfortunately, no detailed information
about the specific technological choices is available, although CKAN is mentioned. See
Sec. 2.3.1 for the evaluation of CKAN relative to the present development.

2.2.2 Oulo smart city traffic pilot

One smart city project that stands out as relevant to the Triangulum development in its
scope and orientation is the Oulo Smart City pilot [6]. The Finnish city of Oulu developed
a pilot that acquires, stores, and analyzes low-latency, real-time traffic data. To solve this
specific use case, Oulu developed a horizontally scalable analytical platform optimized to
quickly process large quantities of sensor data. Oulu’s approach is fundamentally based
on the Lambda architecture [7].

In Lambda, the raw data is delivered separately to batch and speed processing layers.
The speed layer processes the most recent raw data in combination with the last results
provided by the batch layer. The batch layer, which is slower and cannot provide low
latency analysis, is optimized to process large volumes of historical data in the background.
Oulu chose Apache Spark Streaming as the core solution for the speed processing layer,
and RHadoop library and Hadoop MapReduce programming framework for the batch
processing layer [6].

Spark is fast, since it can run in-memory distributed through a cluster. The ability to
run in memory is an important advantage in use cases like Oulu that requires iterative
computing tasks. Spark also runs and integrates well with Hadoop. Furthermore, this
architecture relies on Flume as a message broker native to the Hadoop ecosystem, designed
to deliver data to Hadoop HDFS. A detailed explanation of this pilot was presented by
Altti Ilari Maarala, et al. [8].

Unlike Triangulum, this platform is specific to low-latency real-time sensor data. Thus,
Oulu’s architecture might not be flexible enough to accommodate a wider range of use
cases.

2.2.3 CityPulse

The CityPulse project (www.ict-citypulse.eu) is a smart city project that aims to collect
large-scale streaming IoT data. In principle, this is a highly relevant approach to smart
city data. However, the CityPulse project delves deeply into semantic and ontological
modelling of the data sources, which is beyond the scope of the Triangulum cloud data
platform and its implementation, as explained in Sec. 2.4.

CityPulse has addressed the IoT and ICT challenges of a smart city in interesting ways,
and has leveraged a larger, more focussed team than that which has been available to the
UiS module implementation [9]. Nevertheless, lessons may be drawn from CityPulse for any

GRANT AGREEMENT No. 646578

www.ict-citypulse.eu

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 19

extensions of the present work, especially in cases where data sources have pre-established
and well documented ontologies.

2.3 Other relevant projects

The UiS module implementation may also benefit from considerations from projects that
focus on scalable ICT infrastructures which are not strictly smart city projects. This
section discusses a few such projects.

2.3.1 CKAN

One software project that frequently appeared in the process of in reviewing and discussing
smart city projects was CKAN (www.ckan.org), Comprehensive Knowledge Archive
Network). CKAN is a free and open source solution designed and maintained by the
Open Knowledge Foundation. It provides a repository and management system for open
data. This includes configurable web publishing of data. CKAN is used by governments
and several cities, such as Stavanger municipality (open.stavanger.kommune.no) and the
Brussels-Capital Region (opendatastore.brussels). Similarly, the open data repository
datahub.io is based on CKAN and hosts public and open datasets from 866 organizations.

CKAN has two different types of data storage: The Filestore and the Datastore. The
Filestore stores whole files such as excel spreadsheets, pdf, txt documents, etcetera. These
files are stored as Binary Large OBjects (BLOBs) and CKAN does not provide the means
to access or query parts of that file. To access the contents inside of a BLOB, the user
needs to download the whole file and open it with the appropriate software.

The DataStore is a general-purpose database with fine-grained access. Here, individual
data elements are stored as separate records. The records are accessible and can be queried
directly at the database with no need to download the whole dataset. However, this
functionality requires that a data model and schema is known, and that the database is
set up accordingly beforehand.

While the datastore can be used to store and access fine-grained data, it is not optimized
for time series data, such as sensor IoT data produced in approximately continuous real
time. For a more specific example relevant to Triangulum, this could include the real-
time location of a bus, or the electricity usage of municipal buildings. Finally, CKAN is
developed primarily to host and serve open data. While extensions to CKAN exist for
applications with real time data (extensions.ckan.org/extension/realtime/) and for
restricted access (pypi.python.org/pypi/ckanext-restricted), these extensions are
not a core part of CKAN, nor well supported compared to the core CKAN project.

2.3.2 FIWARE

Another software project that was raised as possibly relevant was FIWARE (www.fiware.
org), an open-source and free software ecosystem for smart applications development. The
development of the platform was funded by FP7 EU projects (Project IDs 285248 and
632893, primarily) with a cumulative budget of over 100 million Euro, and this has been
further extended by the Horizon 2020 program.

GRANT AGREEMENT No. 646578

www.ckan.org
open.stavanger.kommune.no
opendatastore.brussels
datahub.io
extensions.ckan.org/extension/realtime/
pypi.python.org/pypi/ckanext-restricted
www.fiware.org
www.fiware.org

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 20

FIWARE is named after the concept of the future internet, which refers to the idea that
the requirements placed on internet technology are evolving, and the research to address
these evolving requirements. The ecosystem provides and promotes a variety of software
components for various purposes, with the overall goal of connecting cloud computing and
IoT and enabling innovation and development of new services with these components.

After reviewing several of the FIWARE software components, three major contraindi-
cations for the UiS module implementation have emerged:

1. The IoT integration appears most likely to facilitate data collection within an
organization working with an end-to-end solution, i.e. where the cloud computing
back-end and the IoT back-end are implemented together. For example, the context
management model does not provide any clear value when collecting data from
sensors and an IoT back-end implemented without compatibility with the FIWARE
NGSI standard.

2. The FIWARE software components often use pre-existing open source software
projects, where the advantage of using the FIWARE version is not clear.

3. The FIWARE software components are not as well documented, especially in practical
terms, nor as well supported by the online community, as the type of pre-existing
open software projects that often are used within the FIWARE components.

Since the module implementations among Triangulum partners are not required to
follow the FIWARE NGSI standard, FIWARE did not appear to have any advantages over
directly developing and implementing cloud solutions with the technically most appropriate
and best supported open source software components for a given function.

2.3.3 New York Times and Apache Kafka

The New York Times (NYT) has more than 15 million published articles (https://
query.nytimes.com/search) that must be available with low latency to a wide range of
consumer services and applications, including website search, personalization services, feed
generators, as well as front-end applications, like the website and native apps. In the past
20 years, the NYT approached this requirement by building APIs that support pipelining
the published data to the different consumers. The different consumer clients, developed
by different teams, would use distinct schemas and APIs, and this would also change
over time. This was an effort-intensive approach, requiring the maintenance of systems
to normalize content passed from different producers of content to different consumers of
content. In addition, older content was more difficult to access [10].

To solve these challenges, as well as others, NYT adopted a log-based architecture
centred on Apache Kafka (https://kafka.apache.org/) as a message broker. All content
producers store each of the articles in Kafka as a message. Kafka stores all these messages in
a permanent immutable ordered log. The multiple content consumers need only subscribe
to Kafka. By individually processing the log, each consumer client creates its own data
store representing a materialized view, comprising a derivative extraction from the complete
history of events (published content) captured in the log. Further developments on a

GRANT AGREEMENT No. 646578

https://query.nytimes.com/search
https://query.nytimes.com/search
https://kafka.apache.org/

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 21

particular consumer’s materialized view can then be deployed as a completely new consumer
that consumes the entire history of the Kafka log from the beginning.

Since each asset (unit of content) is stored as a separate message, the log is said to be
normalized, in a similar meaning as when the term is applied to relational databases. All
the assets can be referenced on a many-to-many basis, but normalization enforces that a
referenced asset always precedes the referencing element in the ordering of the log. This
ensures that each asset is internal consistent at that point in the history. However, con-
sumers like Elasticsearch do not necessarily support many-to-many relationships between
objects. Thus consumers may require denormalized data to construct the appropriate
materialized view. The NYT provides such denormalized materialized views using the
Kafka Streams client library, which can update and re-bundle all assets and their references
from the normalized complete history log to a denormalized log with only the current
versions of the published content assets.

While the Apache Kafka technology is powerful and relevant in several ways to the
UiS module implementation, it is important to note that the data from other Triangulum
modules to be collected at the cloud data platform is expected to represent segments of
histories that, once recorded, do not require the kind of iterative updating process required
by the NYT.

2.4 Review Summary

In light of the above survey of theoretical background and survey of smart city and other
relevant ICT projects, a preliminary summary is warranted regarding what these other
projects illuminate about the UiS module implementation:

Note that all the above smart city projects serve local requirements, whereas the UiS
module implementations in Triangulum are intended to serve the project as a whole, with
a primary mandate to support reporting and assessment.

These other smart city projects have different objectives and priorities than the
Triangulum cloud data platform, but some are still potentially relevant. For one thing, the
projects collect city data, and may approach their tasks with technologies that might be
of use in the UiS module implementation. The projects have therefore garnered at least
cursory scrutiny in the preparation of the present work.

It is impractical to apply a formal ontology engineering approach in the context of
Triangulum because the set of data sources that could be connected to the data collection
framework is not finite or limited to a small number of domains, and these data sources are
not a priori assured to have well-defined, static data models. Furthermore, the data sources
were often not developed prior to the development of the UiS module implementation.
Many Triangulum modules had not been fully developed and implemented at the time
when major design decisions had to be made regarding the data collection framework in
the cloud data platform.

Hence, a comprehensive ontological treatment of the indefinite number of data sources
is not tractable along with the other objectives and constraints of the UiS module imple-
mentation.

With many data storage solutions, such as CKAN, it is typically impractical and
complicated to change the data schema in the middle of ongoing data collection processes.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 22

In addition, the complete set of data schemas that must be accommodated cannot in
general be known a priori. The UiS module implementation therefore had to be data
model agnostic in its approach.

In particular, due to parallel development of the UiS module implementation and the
module implementations that represent its data sources, the UiS module implementation
was developed to be versatile enough to accommodate schemas of maximum variety and
variability.

While the review of background and relevant work presented in this chapter, as well
as the discussion of the attendant implications, is non-exhaustive, it is hoped that this
provides an illustrative set of examples for the context of the UiS module implementation.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 23

Chapter 3

Architecture

3.1 Architecture Roadmap

3.1.1 Purpose and Scope

This chapter describes the architecture of the system, i.e. the combined UiS module
implementation in the Horizon 2020 Triangulum project. While grounded in software
architecture standards such as ISO 42010:2010 (www.iso-architecture.org/42010) and
in particular the Views & Beyond [11] approach, the present work takes a pragmatic
approach and provides an abbreviated architecture in light of the fact that this chapter
exists in the context of a report that aims to cover more than merely architecture.

This means that a single view of the architecture is presented in this chapter, reflecting
the concerns of the developer stakeholder group. This means the architecture documen-
tation primarily supports the implementation and maintenance of the system. Future
versions of this report may expand this chapter to include additional views that reflect the
concerns of other stakeholder groups, insofar as this has reasonable utilitarian value.

Note that (software) architecture here is defined as an abstract exposition of the
software elements in the overall system, in terms of their relationships and the properties
that affect how the elements interrelate. This excludes the internal details of each element’s
implementation. Note also that this chapter uses the term implementation unit, instead of
module, in deference to the special meaning module has in Triangulum.

3.1.2 Organization

This chapter is divided into sections along the lines of typical software architecture
documentation. Note that documenting the sequence of changes to this document is
relegated to the front matter of this report, under Revision History on page 6.

Section 3.1 gives an overview of the chapter structure and what stakeholders’ concerns
are addressed. Section 3.2 gives an overview of the system, its background, and the
rationale behind the architecture. Section 3.3 presents the implementation unit view of
the system architecture.

GRANT AGREEMENT No. 646578

www.iso-architecture.org/42010

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 24

3.1.3 Stakeholder Representation

This subsection lists the stakeholder roles considered in the development of this architecture,
and their respective identified concerns.

The primary stakeholder roles identified are users, acquirers, developers, and main-
tainers. In the Triangulum context, developers and maintainers are largely the same
persons, i.e. UiS researchers working on the module implementation, and their concerns
are integrated in the perspective of continuous development. Users are also likely to
be mainly UiS researchers, although it is hoped that technical personnel among other
consortium members in Triangulum, both from academic and industry partners, will be
users and acquirers. It is also hoped that there will be users and acquirers among technical
personnel in the Follower Cities.

In general, it is expected that stakeholders’ concerns reflect how the architecture can
usefully serve their respective roles by providing a comprehensible high-level view of the
system. More specifically, typical concerns that the architecture should address include:

• System purpose: What is (are) the purpose(s) of the system?

• Suitability: How suitable is the architecture support achieving the system’s pur-
pose(s)?

• Feasibility: How feasible is the construction of the system?

• Risks and impacts: What are the potential risks and impacts of the system to its
stakeholders?

• Maintainability/evolvability: How can the system be maintained and be devel-
oped further?

Note that all these questions reflect relevant concerns, to some degree or another, for
all the stakeholder roles identified. For example, users may be less concerned about the
feasibility of construction in that users are not involved until the system is constructed
and operational. These different degrees of relevance of each concern with respect to each
stakeholder role is shown in Table 3.1. Each cell reflects how relevant the concern (column)
is to the stakeholder role (row) by the following encoding:

– not very relevant,
+ somewhat relevant, and
++ very relevant.

3.1.4 Viewpoint Definitions

3.1.4.1 Viewpoint defintion: Implementation units decomposition viewpoint

3.1.4.1.1 Abstract

The implementation units decomposition viewpoint presents a system as a set of non-
overlapping, hierarchically decomposable [12] implementation units. This viewpoint should
produce a unique presentation once applied to any given system.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 25

Table 3.1: Stakeholder concerns matrix

S
y
st

em
p
u
rp

os
e

S
u
it

ab
il
it

y

F
ea

si
b
il
it

y

R
is

k
s

an
d

im
p
ac

ts

M
ai

n
ta

in
ab

il
it

y
/e

vo
lv

ab
il
it

y

Users ++ + – + +
Acquirers ++ + + ++ ++
Developers ++ ++ ++ + +
Maintainers ++ ++ + + ++

3.1.4.1.2 Stakeholders and Their Concerns Addressed

This viewpoint primarily addresses the concern of system purpose and the suitability of
the system to support that purpose. However, it is hoped that the viewpoint also informs
feasibility and maintainability/evolvability concerns adequately, by showing the separation
of functional concerns, which in turn enables the modularity of the implementation units.
Finally, while risks and impacts are not explicitly addressed, the clarification of system
purpose and suitability provide the primary background required for any future work on
risks and impacts.

Given the stakeholder concerns matrix as presented in Table 3.1, the degree to which
this viewpoint addresses each stakeholder is clear. All stakeholder roles have a majority of
their concerns addressed by this viewpoint, although it may provide more information than
necessary for users. However, risks and impacts, which are a concern to all stakeholders,
are not explicitly addressed by this viewpoint.

3.1.4.1.3 Elements, Relations, Properties, and Constraints

The primary elements in this viewpoint are implementation units, which can be hierarchi-
cally decomposed, in which case an element can relate to its sub-elements as constituents.
Each implementation unit element has a name and a functionality, and software-to-software
interfaces with other software elements. The flow of information from humans and data
sources is also included in this viewpoint, e.g. as directionality of software-to-software
interfaces, to clarify system purpose and the suitability of the interrelated implementation
units.

3.1.4.1.4 Consistency and completeness

A view is complete and consistent with this viewpoint when the latter is applied to a
system such that:

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 26

1. Each element has at most one parent.

2. Each major functionality is provided by exactly one element.

3. The functionality of the the set of elements meets the system requirements.

In addition, the design of the system, discussed in Chapter 4, is consistent with this
architecture viewpoint if all implementation units correspond to components of technologies
in alignment with current procurement decisions.

Likewise, the implementation of the system, discussed in Chapter 5, is consistent with
this architecture viewpoint if all source code can be correlated with specific implementation
units.

3.1.4.1.5 Viewpoint Source

This viewpoint was adapted from the Views & Beyond [11] approach and associated
documentation template.

3.2 Architecture Background

3.2.1 Problem Background

The constraints exerting significant influence over the architecture fall into two cate-
gories: Triangulum task/deliverable descriptions, and the supporting UiS infrastructure
development, i.e. the CCP.

In the Triangulum Grant Agreement (i.e. EU Grant Agreement number 646578),
the UiS deliverables are described in connection with Work Package 2 (WP2) and Work
Package 5 (WP5). As well as reporting requirements, the UiS deliverables include the
implementation of two modules. These are described in the Grant Agreement in various
ways. The mandate these descriptions constitute can be summarized as follows:

Regarding Module 544 Cloud data platform (D2.2):

• A cloud data platform is to be developed to support the collection and storage of
data generated by partners and WP2.

• The data sets to be collected by the cloud data platform relate to the “implementation
of the technological solutions in each city”, i.e. the Triangulum modules.

• The cloud data platform is to support “automated assessment and integration” of
these data.

• The cloud data platform is to help document the impacts of the Triangulum modules.

• The cloud data platform is to “facilitate open access to the data from the cities and
provide WP2 with a single point of reference for the impact assessments.” Note that
this point is confined to “as openly available as proprietary interests allow.”

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 27

• The cloud data platform is to “enable key stakeholders and external users to interact
with and use” the open data collected and stored.

Regarding Module 542 Data analytics toolkit (Subtask 5.4.2):

• The data analytics toolkit is to provide “a framework and generic tools for big data
analytics.”

• The data analytics toolkit is to enable the integration and analysis of the data
collected and stored in the cloud data platform.

From these descriptions, it is clear that the two modules can most profitably be seen
as parts of a single system, with Module 542 functionality dependent on and subsumed by
Module 544 functionality.

The second category of major constraint is represented by specifications of the facility
that can host the UiS module implementations when deployed and operating: CCP has
been developed primarily by Dr. Aryan TaheriMonfared, as a necessary foundation in
conjunction with the UiS module implementations with overt correspondences to the
task/deliverable descriptions in Triangulum, and constitutes an infrastructure that can
provide a variety of services for data storage and computation.

The physical and software infrastructure of the CCP data centre at UiS, can provision
virtual machines (VMs) and network resources to host the UiS module implementation,
including both the cloud data platform and data analytics toolkit. The allocation of the
(virtualized) non-software environment is therefore largely given, and — to a lesser but
still large extent — so is the runtime environment of the software once implemented and
operational, since CCP must provide a finite number of VM variants (images specifying
operating system; configurations of VM resources like memory and number of virtual
CPUs (vCPUs)).

3.2.1.1 System Overview

Based on Sec. 3.2.1, an overview can be described of the planned integrated technical
implementation of D2.2 and Subtask 5.4.2:

The two parts of the integrated implementation are the data collection framework and
the data processing framework. The data collection framework is intended to contain
the implementation units responsible for the acquisition and storage of data, as well as
associated necessary secondary functionalities.The data processing framework is intended
to contain the implementation units responsible for processing data, e.g. for analysis
purposes.

Compared to the Triangulum task/deliverable descriptions, we can say that the data
collection framework corresponds to the part of deliverable D2.2 that is not responsible
for integrating or analyzing data, while the data processing framework corresponds to the
internal deliverable Subtask 5.4.2. Thus, strictly the cloud data platform contains both
the data collection framework and the data processing framework, and hence also the data
analytics toolkit.

However, the data analytics toolkit is to be developed so it can be deployed indepen-
dently of the data collection framework.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 28

3.2.1.2 Goals and Context

The cloud data platform aims to collect, store, and process data from the other technological
solutions (i.e. modules) implemented in Triangulum.

The architecture is intended to provide a high-level map of the required functionalities,
represented by implementation units, while leaving specific technological choices as open
as possible. This is intended to support more flexible implementation, maintainability, and
future development, where technological choices are relegated to design (see Chaper 4).
This segmentation of choices into discrete levels of abstraction is intended to support that
future challenges to the system may be solved a lower levels unless contextual changes
demand an escalation up the levels of abstraction to solve newly arisen problems on the
level of design, or even architecture.

The life cycle of the UiS module implementation is not clarified beyond the project
timeline of Triangulum. However, our aim when developing the module was that parts or
all of the software will be replicated by Follower Cities and/or other cities, countries, etc.

3.2.1.3 Significant Driving Requirements

The driving requirements of the system architecture can be categorized as either qualitative
or behavioral:

To collect and store data from a variety of external data sources — where neither the
protocol or interface to set up data transfer, nor the data model or schema to store the data
internally to the cloud data platform is known a priori — requires eventual specifications
from data providers prior to data transfer, but also generalization and flexibility on the
part of the data collection framework.

Likewise, the storage of data from the various data sources should be harmonized as
much as possible to simplify the data processing of each source. This means the approach
to develop the processing of one data set — especially extraction, transformation, and
loading operations — should be as similar as possible. This means a very general approach
to schema is required.

This means involvement is required from the technical personnel of the consortium
member organizations that will act as data providers. This involvement is required insofar
as each data source is unique and requires system and domain knowledge in order to set
up ongoing data transfer from the data source into the cloud data platform. At the same
time, the required involvement should be minimized to spare the efforts of both consortium
member personnel and of UiS researchers.

Both for the sake of making the data collection framework separable from the rest of
the cloud data platform as a data analytics toolkit, and to simplify future developments
of the cloud data platform, the functionalities should be implemented in modular units in
accordance with the principle of separation of concerns.

Since the big data paradigm is explicitly espoused in the task/deliverable descriptions,
and the volume of data is not known a priori, the system and its implementation units
should be independently horizontally scalable.

Likewise, the implementation units should be available to each other on an ongoing
basis once the system operational, to support continuous data flow. Given the allocation
environment CCP and the big data paradigm, the implementation units will be implemented

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 29

as modular subsystems that can be deployed in a distributed, fault-tolerant manner.
Thus, the primary quality attribute requirements of the system are:

• Generality: Supporting flexibility and low-effort requirements of human intervention
to specify processes for each external data source.

• Modularity: Supporting maintainability/evolvability and scalability of the system
and components.

• Availability: Supporting ongoing operations of interdependent functions.

Behaviorally, the requirements can be summarized as follows: The system must be
able to

• Acquire data from external data sources, transferring the data in the “raw” format
as it is made available.

• Ingest the data once acquired, meaning (1) load balancing pre-storage data flow as
required, as well as (2) any required pre-storage processing of the data to harmonize
it with the general storage solution.

• Store the data once ingested in a common, general way along with the data acquired
and ingested from all the external data sources.

• Make the stored data accessible to the data processing framework.

• Extract the stored data via some access method and load the data in a way that is
amenable to process.

• Process the data for the purposes of exploration, manipulation, analyses, and
calculations.

• Store the results of processing, separate from but alongside the data originally
collected from external data sources.

3.2.2 Solution Background

Having described the specific challenges of the system architecture in Sec. 3.2.1, the
approach adopted to meet those challenges is developed presently.

3.2.2.1 Architectural Approaches

As a clear sequence of critical steps emerges from the system’s intended functions, a
pipeline motif is the natural underlying pattern for the system. In discussing the cloud
data platform, it is therefore valuable to consider the primary direction of data flow.
One can define the external data sources as upstream of the cloud data platform, and
define persons or software clients receiving output from the data processing framework
as downstream from the cloud data platform. Internal to the cloud data platform, the
data collection framework is primarily upstream to the data processing framework, though
the data processing framework should be capable of writing data to storage in the data
collection framework, against the primary direction of the data flow.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 30

3.2.2.2 Requirements Coverage

The qualitative requirements in Sec. 3.2.1.3 of modularity and generality are addressed by
choosing open-source, community-supported software technologies for each implementation
unit, with a focus on data model agnostic serialization for transfer between implementation
units and schemaless storage.

The behavioral requirements are addressed by assigning separate implementation units
(each a constituent of either the data collection framework or the data processing framework)
to each of the required system behaviours. Note that access capabilities between programs
are typically enabled directly by native application programming interfaces (APIs), or
by custom connector programs that enable communication between APIs that are not
natively compatible.

3.3 View

3.3.1 Implementation Units Decomposition View

3.3.1.1 View Description

This view reflects the implementation units of the system, in particular from the viewpoint
of developers, with an emphasis on the movement of data (indicated by arrows) from
external data sources, through the implementation units, and out to eventual external
users and applications. Note that the view contextualizes the implementation units with
external elements at the necessary points of contact.

3.3.1.2 Primary presentation

The view includes contextual elements, including the data provider, typically a Triangulum
partner, or alternatively a linked third-party consortium member, and the data source,
typically representing directly a Triangulum module at the data provider’s disposal.
Furthermore, external users and applications are contextual elements for this view.

The implementation units comprise the hierarchically decomposable elements of the
system. The system as a whole is designated the cloud data platform, and contains two
sub-elements, the data collection framework and the data processing framework. The data
collection framework contains the implementation units data acquisition, data ingestion,
data storage, and data access. Meanwhile, the data processing framework contains the
implementation units exploratory data analysis, batch processing, and modelling.

Each of these low-level implementation units can be implemented as separate software
components addressing the corresponding required functionality of the overall system. As
required in design and implementation the software elements can be further decomposed
in lower levels of abstraction.

3.3.1.3 Context diagram

This section describes the elements and relations shown in Fig. 3.1 to illustrate the
implementation units decomposition view of the system that represents the architecture of

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 31

the UiS module implementation.

Data provider
(Partner)

Data source
(Module)

Cloud Data Platform

Data Collection Framework

Data Processing Framework
(Data Analytics Toolkit)

Data Acquisition

Data Ingestion

Data Storage

Data Access/Exposure

Exploratory data analysis

ModellingUsers and
applications

Batch processing

Figure 3.1: UiS module implementation architechture: Implementation units decomposition
view.

Since the set of data sources that the cloud data platform is expected to collect data
from is not amenable to rigorous ontological modelling given the project constraints, the
data collection framework is designed to be data model agnostic. To support subsequent
analysis, a simplified, human-readable data model is elicited together with technical
personnel from the data providers in the data intake form. The need for a semantic data
model for each data source was limited to a human-readable documentation that can aid
human data analysts in constructing impact indicator calculations and analyses.

This is indicated in Fig. 3.1 by the upstream external human input along with the
data coming from the data source itself. The process of ongoing data transfer from the
data source to the data collection framework must be managed by an implementation unit
called data acquisition. It is worth noting that this implementation unit must also bridge
between the specific data source (of which there may in principle be an arbitrary number)
and the general data collection framework.

The sequence of implementation units in the data collection framework should be clear
within the context and abstraction level of this architecture. Note that data acquisition must
meet specific requirements of individual data sources, which is challenging to generalize.
However, assuming this requirement is met, the primary flow of data in the data collection
framework should go in sequence through the implementation units of data acquisition,

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 32

data ingestion, data storage, and data access.
The data processing framework contains three implementation units, reflecting required

functionalities with respect to exploratory data analysis, which is a largely ad hoc human
endeavour with statistical and graphical tools, batch processing, which is the capability to
process large amounts of (offline) data, and modelling, which here may be the combination
of exploratory data analysis activities which can inform certain batch processing activities
to build up a model that in turn can be used to respond to more local or recent data from
a given source, for predictive purposes.

It should then be possible to give registered external users and services access to open
data stored on the data collection framework. Likewise, registered external users should
be able to access analytics tools on the data processing framework.

3.4 Architecture Summary

This chapter has provided an overview over the system architecture of the UiS module
implementation. This overview included rationales involved in making the various system
architecture decisions. The situational context informing the architecture has also been
described in detail. The implementation units have been discussed in terms of their
required functionalities and quality attributes. The essential relationships between the
implementation units have also been indicated.

The system architecture may in principle be developed further, although the present
form represents a practical distillation of the fundamental concepts involved in the module
implementation. Future developments on the architecture documentation of the module
implementation might include views on non-functional back-end requirements, and external
user views.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 33

Chapter 4

Design

4.1 Design overview

Having established the overall architecture of the UiS module implementation in Chapter 3,
this chapter proceeds to discuss the design choices regarding each of the individual
implementation units that constitute the architecture. The design represents the plan
for how the architecture should be implemented. These design choices must address
which technology can meet the quality and behaviour requirements, including critical
relationships between the implementation units of the architecture.

Note the terminological distinction between an implementation unit, which is a subsys-
tem defined on an architectural level of abstraction, and the software component, which is
generally just one of many possible solutions to the requirements of the implementation
unit. This chapter begins the planning of components that can meet the requirements of
the implementation units. However, the distinction is made because other components
could be designed and implemented based on the same architecture and implementation
units.

This supports the quality attribute of modularity and the principle of separation of
concerns, which in turn supports the evolvability of the system. For example, the system
based on the same architecture could be updated by iterating through the implemen-
tation units of the architecture one at a time, and further developing the design and
implementation of the corresponding component.

This chapter briefly goes through the design choices with regards to the components
corresponding to each implementation unit, focussing primarily on choices of technologies
that can meet the requirements. To properly contextualize the design choices for the
UiS module implementation, note that the CCP is designed to provide Linux operating
systems, which are open source, such as Ubuntu. For the sake of stability and broad online
community support, Ubuntu 16.04 LTS (Xenial Xerus) (www.ubuntu.com) is chosen as the
default operating system of the VMs hosting the UiS module implementation components.

The data collection framework is discussed in terms of data acquisition (Sec. 4.2), data
ingestion (Sec. 4.3), data storage (Sec. 4.4), and data access (Sec. 4.5). Note that data
access is discussed both in terms of internal access from the data processing framework to
the data collection framework, and in terms of access to either framework by an external
user or service. The data processing framework is discussed in terms of tools for exploratory

GRANT AGREEMENT No. 646578

www.ubuntu.com

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 34

data analysis (Sec. 4.6.1), for batch processing (Sec. 4.6.2), and for modelling (Sec. 4.6.3).

4.2 Data Acquisition

The UiS module implementation in Triangulum must be able to collect data from a variety
of external data sources that cannot be defined beforehand. This means the data collection
framework must consist of a flexible and general set of components to handle data sources
with diverse data models and formats, as well as unknown volume and velocity. Thus, it
is clear that the component corresponding to the data acquisition implementation unit
must consist of two types of subcomponents: a type that meets the specific requirements
of an individual data source as it becomes known, and a type that can pass the data
appropriately to the more general part of the data collection framework. These types of
subcomponents can be called (a) adaptors, and (b) queueing and load balancing.

4.2.1 Adaptors

Since each data source may have not only a unique data model, but also specific methods
for how data transfer should occur, some customization is required for each new data
source that can be identified and specified with the help of technical personnel from the
data provider. It must be assumed that each new data source requires a separate adaptor
subcomponent to be developed that can undertake the transfer the data from the data
source according to the particular protocol or interface that the data provider offers.

Some major interfaces (APIs) and protocols can be anticipated, but the specifics cannot
be anticipated reliably. Once some data sources are characterized and ongoing data transfer
is established, a generalized approach to implementing adaptors can be defined, but this
aspect of the data acquisition implementation unit will require iterative and individual
development efforts. Since the level and amount of required customization is anticipated
to be high in the context of Triangulum, the appropriate approach is to use a scripting
language.

Python is a versatile and popular programming language with broad support in the open
source community that can be used for scripting a variety of custom functions. The Python
programming language in all its release versions is open source. In addition, for Python
many open source libraries exist that support functionalities beyond the core libraries in
Python. Finally, since Python is more commonly used for data analysis purposes than
otherwise similar languages such as Ruby, it is an expedient choice for scripting where
necessary and amenable across the UiS module implementation. Thus, Python is the
chosen default technology for general scripting purposes, and for data acquisition adaptors
in particular.

4.2.2 Queueing and Load Balancing

The adaptors discussed in Sec. 4.2.1 are required to address the specific requirements to
establish ongoing data transfer from individual external data sources into the general data
collection framework. The adaptors are necessary to address the potentially unlimited
variety of data models and interfaces/protocols that the external data sources represent

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 35

in a big data paradigm. However, the external data sources also represent a challenge in
terms of the volume and velocity of data transfers.

The CCP context can set safety limits on these parameters, but to successfully collect
data, the data acquisition stage should avoid overloading downstream components in case
of bursty behaviour by data sources or adaptors. Thus, the queueing and load balancing
component is downstream from adaptors. The role of this component is to buffer the data
that is captured with various adaptors from their respective data sources, and to dispatch
the data to the preprocessing component.

The chosen technology for queueing and load balancing is Apache Kafka, as it is highly
flexible and has a proven track record in enterprise scale applications, as described in
Sec. 2.3.3.

The communication mechanisms to implement this component follow the message
queueing paradigm. In the cloud data platform, using a message queueing service for
queueing and load-balancing decouples the adaptor components from the data ingestion
components. This decoupling is achieved through a communication pattern called publish-
subscribe.

In this pattern, one subsystem sends messages to another by means of a publish
operation to an intermediary queueing service. Each message includes a topic and a
message body. Any other subsystems that have performed a subscribe operation on the
queueing service with a given topic as argument will then receive messages labelled with
that same topic.

Since bursty behaviour in the data flow is a realistic risk upstream from this component,
the queueing and load balancing component is required to be fault tolerant. This component
attribute can be ensured by various means by the different candidate technologies. In the
case of Kafka, fault tolerance is ensured by setting appropriate values for parameters such
as number of partitions and replication factor in the implementation.

Note that Kafka cluster operations require a mechanism for consensus in among the
Kafka nodes, which is solved by leader election. Leader election is a task used in many
fault-tolerant distributed systems. The methods and mechanisms may vary. In the case of
Kafka, a separate Zookeeper cluster can be used to handle leader election. The Zookeeper
cluster uses so-called atomic broadcast primitives in avoiding a split-brain scenario where
a cluster divides into subsets of nodes that are not in agreement. Consequently, leader
election is also a process that affects fault-tolerance.

Kafka was originally developed by LinkedIn [13] and released as open source in 2011.
The code is available under an Apache 2.0 license, which is approved by the Open Source
Initiative. Apache Zookeeper is also available under the Apache 2.0 license.

Kafka uses an intuitive semantic model, and is very clear about its queuing model.
The main innovation with Kafka lies in the immutability of published messages, which is
achieved by a so-called commit log. In this model, data is published to Kafka under topics.
The data is stored for configurable period of time, which makes it possible for clients to
read earlier messages that are kept in the commit log. The availability of such a log means
that a data consumer not only can recover in case of failure, but can also be designed to
handle blocks of messages at once.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 36

4.3 Data Ingestion

Having acquired the data from external data sources, and passed into the pipeline of
the data collection framework, there is a need to perform ingestion of the acquired data
into storage. This involves preprocessing the data insofar as necessary in the process of
transferring data to the storage component(s).

Necessary transformations may include inserting, combining, or omitting certain data
fields. The contents of each message (i.e. data point) could be parsed, and subsequent
processing could be based on this, such as storing different categories of messages from a
single data source in different data sets, or completely dropping certain types of messages.
The data ingestion component could in principle be used to harmonize the schemas of
comparable data sets by imposing mappings from the data source schema to some preferred
schema for storage in the data collection framework.

Regardless of the specific operation or purpose of any such transformation, a data
ingestion component enables preprocessing the data before storage, which can save a great
amount of time and effort compared to manipulating and harmonizing data sets only after
the act of collecting data, typically called data munging.

Logstash is a distributed computing technology for parsing, filtering, and transforming
incoming data before writing the data to storage. Logstash also supports transferring the
preprocessed data to several different types of data storage. In addition, it is a technology
that is built to work particularly well with Elasticsearch (see Sec. 4.4), and Logstash is part
of the Elastic stack (www.elastic.co). Finally, Logstash is available under an Apache
2.0 license. For these reasons, Logstash is the chosen technology for the data ingestion
component of the data collection framework.

4.4 Data Storage

Data storage is crucial when collecting data that is to be used in any way subsequently.
The manner in which the data will be used informs the choice of storage technologies. As
previously pointed out, the underlying data model or schema is not known beforehand
with respect to the external data sources from which the UiS module implementation is
intended to collect data.

Thus, the choice of storage technology should be flexible — approximately schemaless.
However, insofar as the data source provides data with schema, these schema should be
preserved. This is especially true with the initial stages of establishing data collection
from a given data source, before there has been developed any particular mapping to a
schema that is more useful within the Triangulum context than the native schema of the
data source.

Given the data model agnostic starting point and an orientation to support data
analysis, and especially exploratory data analysis due to the inherent unfamiliarity of
the data sources, a highly flexible data storage solution was sought in the UiS module
implementation. The chosen technology for this data storage component is Elasticsearch,
another part of the Elastic stack that is also available under an Apache 2.0 license.

In addition to being built to work with the other Elastic stack technologies that are

GRANT AGREEMENT No. 646578

www.elastic.co

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 37

used in the components of the UiS module implementation (see Sec. 4.3 and Sec. 4.6.1),
Elasticsearch has the advantage of supporting bidirectional interaction with Apache Hadoop
jobs, and hence with Apache Spark (see Sec. 4.5.1 and Sec. 4.6). Elasticsearch is also
deployable as a distributed system, supporting the fault tolerance and availability of the
stored data. Finally, the underlying architecture of this technology provides data storage
where each collected data point is a document indexed in a search engine.

Ceph (ceph.com) object store is a second technology for distributed data storage that
is included in the UiS module implementation. This is a technology that is provided
directly by the CCP as volumes independent from VMs, and which can be used for back-up
of data alongside the Elasticsearch cluster of VMs. Ceph is available under a combination
of different open source licenses, primarily LGPL2.1.

Ceph is an integral technology in CCP, and provides the VM-specific virtual disks
via Ceph block storage, which underlies the Elasticsearch data storage. The data storage
based on Elasticsearch is intrinsically temporary, based on the principle that the VMs
that host the nodes in the Elasticsearch cluster themselves are temporary. In contrast, the
Ceph object storage service is provided independent of data storage on VMs, for long-term
archiving and back-up, for sharing of data, and for recording VM images. The Ceph object
storage service is analogous to the S3 service provided by Amazon Web Services, and the
interfaces are compatible.

4.5 Data Access

Once collected and stored, the data must be made available for processing. This is
differentiated into the component categories of internal access, and external access. Internal
and external access refer to whether the user or program trying to access the stored data
is internal or external to the cloud data platform and its network. Note also that external
access development has not been prioritized up to this point due to other overriding
requirements. However, depending on priorities, the development of external access
components can be undertaken as an immediate next step.

4.5.1 Internal Access

The components in the data processing framework can access the data storage components
in a number of ways. Mainly, the API of Elasticsearch is used. In principle, the S3-
compatible interface of Ceph could also be used. However, with Ceph object storage
providing back-up primarily, this would not be the default approach unless specific
advantages can be identified. This would likely be most relevant if batch processing (see
Sec. 4.6.2) could be made more efficient by accessing data directly from the Ceph object
storage.

For data storage access by exploratory data analysis components, the appropriate
access interface depends on the component. See Sec. 4.6.1 for further details.

GRANT AGREEMENT No. 646578

ceph.com

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 38

4.5.2 External Access

External access, meaning providing controlled access to the collected data by users
or programs outside the CCP network, has yet to be developed in the UiS module
implementation.

However, the external access component is currently envisioned as a secure login
webservice for registered users. Registered users who can prove their identity as either
authorized representatives of consortium members or commissioned services would be able
access all the collected data, while other registered users would only be able to access
fully open data. This is a consequence of the need that has arisen in the consortium for
members to be able to act as data providers without providing their data completely
without restrictions.

This means identity verification is a challenge that must be solved for external access.
This may also go hand-in-hand with the development of external access to the data
processing framework as a data analytics toolkit service. An intermediary step may also
be to develop external read-only access to dashboards that can be created exploratory
data analysis tools discussed in Sec. 4.6.1.

4.6 Data Processing

In the Triangulum context, the data processing framework should serve both the purpose
of automating WP2 impact assessments and representing the WP5 internal deliverable
Subtask 5.4.2. Consequently, both user friendliness and the analytical sophistication
expressible by the data processing components must be addressed.

While the components described here have overlapping technology choices, it is impor-
tant to clarify the distinction between the components on the level of designing the data
processing framework in terms of the role each component is intended to play:

Exploratory data analysis (Sec. 4.6.1) is a pre-requisite for more advanced analytics,
especially when the ontological data model of the data source is not well known, or part
of the analyst’s primary domain expertise.

Familiarity gained through exploratory data analysis provides the basis to build more
advanced analytics. For example, a model can the be developed using a machine learning
algorithm. Alternatively, a script can be developed to evaluate impact indicators for a given
module, that simplifies the evaluation process from a human perspective by performing it
in the background. Such processing is described as batch processing, in that it may be
appropriate to perform operations on a larger subset of the data, and to undertake longer
sequences of operations without manual intervention, as compared to exploratory data
analysis.

Having developed a model — either by training a machine learning algorithm on a
large dataset in batch processing or otherwise — it may be useful to turn this model into
a modelling service that can take a smaller data set, such as the most recent history of a
time series, or an individual data point from a given data source, and make a classification
or prediction regarding the smaller data set or individual data point, based on the already
developed model.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 39

4.6.1 Exploratory Data Analysis Tools

The technology Kibana offers a flexible and user-friendly graphical user interface (GUI) as a
web application that can be used to visualize and explore the data stored on an Elasticsearch
cluster. In this case, the internal access is made using the APIs of Elasticsearch. Kibana is
also part of the Elastic stack, and available under an Apache 2.0 license. However, unlike
the other two Elastic stack technologies adopted in this design, Kibana does not require
or lend itself to distribution over a cluster of multiple nodes. Thus, Kibana is chosen as a
technology for exploratory data analysis in the UiS module implementation.

Regardless of its user-friendliness and usefulness for gaining a high-level overview of a
data set, Kibana does not excel at sophisticated or computationally intensive data analysis.
To address this requirement, Apache Spark (spark.apache.org) is chosen as a second
technology for exploratory data analysis.

Spark accelerates Apache Hadoop and the MapReduce paradigm for distributed comput-
ing, by performing computations on data in memory. Spark is available under an Apache
2.0 license, and Arguably, Spark is most appropriate for a second level of exploratory
data analysis, beyond simple visualization and going into formal statistical exploratory
data analysis, as well as developing and testing individual operations that may later be
combined into batch processing.

As a concession to user friendliness, Spark is here developed in terms of its Python
API, called PySpark. Spark is also to set up JupyterHub (jupyter.org), which is
available under a revised BSD license. JupyterHub can provide multiple users with Jupyter
Notebook sessions, and can provide each user with a Spark session to work with dynamically
provisioned Spark worker nodes. Note that Jupyter Notebook is a web application that
enables writing and running code, visualizing results, and creating markdown annotations.
The advantage over a typical integrated development environment is that the steps of a
multi-step code can be more easily decoupled and evaluated individually.

Note that Spark must connect to Elasticsearch via a special Elasticsearch-Hadoop
connector provided by Elastic.co, that enables bidirectional read/write capabilities for the
Spark operations on the Elasticsearch cluster.

4.6.2 Batch Processing Tools

The purpose of batch processing has been explained above, and the technology to perform
batch processing is chosen to be Apache Spark, as well. This takes advantage of the fact
that exploratory data analysis can then more directly support the development of batch
processing scripts. A distinction from the pure exploratory data analysis is that after the
appropriate operations for batch processing have been developed, it makes sense to take
the PySpark instructions out of the Jupyter Notebook and apply them as a simple Python
file that is then submitted as a job to the Spark cluster via the command-line interface.

4.6.3 Modelling

As with batch processing, after developing the operations (and the model) using exploratory
data analysis and/or batch processing, the PySpark code should be bundled a Python
file that is then submitted as a job to the Spark cluster via the command-line interface.

GRANT AGREEMENT No. 646578

spark.apache.org
jupyter.org

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 40

However, to develop this into a service that is actively listening for input and ready to
output on demand, it may make sense to manage such a script using Systemd, which is a
technology included in the default operating system, Ubuntu.

4.7 Design Summary

With this description of the components design as derived from the system architecture in
Chapter 3, a roadmap to implementing the actual software components is established. The
technology choices for the necessary components inferred from the implementation units
constitute the core of the system design here. The implementation of each component is
less abstract, and adjustments are unavoidable. The specifics of how this design has been
implemented are further described in Chapter 5.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 41

Chapter 5

Implementation

This chapter presents the actual software implementation of the architecture and design
discussed in the Chapters 3 and 4, respectively. The UiS module implementation is here
discussed in terms of each of the implemented software components. This chapter provides
further detail on the open source software technologies chosen for each component, and
the configuration and coding undertaken to adjust and integrate the components. Where
relevant, some context is also provided regarding the process of developing the UiS module
implementation.

5.1 Pipeline and Components Overview

Before discussing the implementation of individual components in greater detail, an
overview is in order to set a proper context for the implemented components. Note that
some technologies (most of the “minor” technologies) are included in the implementation
which are contingent on situational expediency and secondary to design choices (the
“major” technologies).

It has been noted that the pipeline architecture pattern is a major part of the UiS
module implementation, and the intended data flow can be explained here in greater
detail to help motivate and give an overview to the subsequent sections focussing on
the implementation of individual components. Thus, the pipeline and data flow can be
summarized as follows:

1. The (external) data source offers data via some API or queue system that is specific
to the data source in question.

2. The technical personnel at the data provider submit a “Data Intake Form” created
in Google Docs so that the researchers at UiS can — among other things — develop
an adaptor for the specific data source.

3. The adaptor is developed and instantiated as a running service on the cloud data
platform.

4. The data is transferred on an automated, ongoing basis (regularly or irregularly)
from the data provider to the cloud data platform.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 42

5. The data coming into the cloud data platform is load-balanced by a Kafka cluster
holding messages in queues.

6. The data in the Kafka queue is ingested and preprocessed by a Logstash cluster.

7. The data ingested and preprocessed by Logstash is indexed and stored in an Elastic-
search cluster.

The data ingested and preprocessed by Logstash is also stored to S3/Ceph Object
Storage for redundancy.

8. The data indexed and stored in an Elasticsearch cluster is accessible via the Elastic-
search API to data analysis tools.

9. The data in Elasticsearch can be accessed by Kibana, in particular for exploratory
data analysis.

The user can access the Kibana GUI via a browser navigating to the appropriate
IP and port. Kibana can be used to build dashboards to visualize data.

10. The data in Elasticsearch can be accessed by Spark (using the Hadoop-Elasticsearch
connector), in particular for batch data processing and analyses with advanced
statistics and machine learning.

The user can access a JupyterHub cluster to manipulate the data with Spark
using the PySpark API. Spark can be used to calculate values of impact indicators
based on data in the Elasticsearch cluster.

The major technologies adopted from external open source projects include: Kafka,
Logstash, Elasticsearch, Ceph, Kibana, JupyterHub, and Spark. Minor technologies
adopted from external open source projects that figured in the implementation include
Filebeat (for system self-monitoring, log collection), Collectd (instance self-monitoring),
EMQ (previously EMQTT, for Queue Adaptors), Systemd, and Zookeeper. In addition,
various Python packages were used.

The minor technologies adopted from external open-source projects were used in specific
components, and are discussed along with the major technologies in the corresponding
subsections. This document assumes some technology as contextual and needing no
introduction, such as the Linux operating system and the Bash shell and command
language. In general, it is worth noting that Systemd is already built into the majority of
the external open-source projects that are used as major technologies in the UiS module
implementation. For example, when installed on Ubuntu, the Elastic stack technologies are
managed as Systemd services. Also, while the Python packages used are discussed where
appropriate, these are bordering on the aforementioned category of contextual technologies,
where some familiarity must be assumed.

In this chapter, as well as in Chapter 6, specific files are discussed by referencing the
path of the file with respect to the repository. For example, cloud-data-platform/src/
contains the directories containing the deployment-specific implementations of the cloud
data platform.

Table 5.1 shows how the key pre-existing technologies are involved with the major
components in the module implementation. Parenthetical checkmarks in the table indicate

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 43

that while Systemd is a technology involved in the corresponding components, that
involvement comes already implemented with the relevant technology.

D
at

a
A

cq
u
is

it
io

n

Q
u
eu

ei
n
g

an
d

L
oa

d
B

al
an

ci
n
g

D
at

a
In

ge
st

io
n

D
at

a
S
to

ra
ge

D
at

a
A

cc
es

s

D
at

a
P

ro
ce

ss
in

g

Python 3 – – – – 3

Systemd 3 (3) (3) (3) (3) (3)
EMQTT 3 – – – – –
Kafka – 3 – – – –
Logstash – – 3 – – –
Elasticsearch – – – 3 3 –
Ceph Object Storage – – – 3 3 –
Kibana – – – – – 3

Spark – – – – – 3

JupyterHub – – – – – 3

Table 5.1: Overview of technologies in components

The rest of this chapter is divided into two divisions: the data collection framework
and the data processing framework, in Sections 5.2 and 5.3, respectively.

In Sec. 5.2, the components of the cloud data platform that fall under the data collection
framework, are described in detail. While not a deeply integrated component or even a
software implementation, Sec. 5.2.1 discusses the aforementioned Data Intake Form used in
Triangulum by UiS researchers. Section 5.2.2 discusses how the general Adaptor component
is implemented with a custom python package that was created as part of the present work.
In Sec. 5.2.3, the implementation of the queueing and load balancing component as a Kafka
cluster is discussed. Section 5.2.4 goes through the implementation of the ingestion and
preprocessing component as a Logstash cluster. Section 5.2.5 presents the implementation
of the storage component as an Elasticsearch cluster and as S3/Ceph Object Storage.
Concluding the data collection framework division of this chapter, Section 5.2.6 elaborates
on the APIs of the storage component implementation, which provide the means of
accessing the data collected.

In Sec. 5.3, the components of the cloud data platform that fall under the data
processing framework, are described in detail. Section 5.2.6 discusses how the data
processing framework accesses data stored by the data collection framework. Section 5.3
describes the exploratory data analysis tools implemented as both Kibana and clusters
running JupyterHub and Spark.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 44

5.2 Implementation division 1: Data collection

framework

5.2.1 Data intake form

The exception to the rule about open source software was the use of the Google forms
service to formulate the data intake form. Creating and hosting a survey service could in
principle be done with open source solutions, but not in a timely manner alongside other
priorities. The data intake form (https://goo.gl/forms/72fRjJKgZ8fa1KHF3) was used
in Triangulum to collect the necessary information to generate adaptors for the various
data sources — and to plan impact indicator calculations in terms of the data to be
collected from those data sources.

The data intake form has been an important part of the iterative process of commu-
nicating with partners about what data they could provide, and under what conditions.
The discussions surrounding this form also served as a starting point to determine the
appropriate methods to establish ongoing data transfer from a given data source to the
data collection framework.

The data intake form is also intended to collect human-readable / pseudocode level
information that supports the manual creation of adaptors and impact indicators. This
is necessary to connect a specific data source to the data collection framework. Also,
information about impact indicators and the underlying data model is needed to program
the automated calculation of those impact indicators for the given data source.

5.2.2 Adaptors

The software implementation of the cloud data platform, and especially the data collection
framework, was undertaken concurrently with the process of discovering and characterizing
the relevant external data sources. It was determined that all the data sources required
individual adaptors to be developed in order to connect any specific data source to the
general data collection framework.

To be able to create an arbitrary number of instances of the adaptor class of com-
ponents adapted to transfer specific data sources, a custom Python package was cre-
ated in a repository cdpadaptor, alongside the script cloud-data-platform/generator/
cdpadgenerator.py which can be run to generate a new adaptor for a new data source,
including a Systemd service (and timer where appropriate) for that adaptor.

The adaptor facilitates the data flow as follows:
The data is acquired and converted to a uniform encoding and serialization by the

adaptors. The generated adaptors take the form of Python scripts that are executed by
Systemd. Data points that are acquired by an adaptor are passed to the message broker
implemented by Kafka, with a topic as given by the dataset name with the string _raw

appended.
Logstash is a subscriber to various Kafka topics and will process the entries that are

published to the various topics. All topics known to Logstash will do some processing to
the entries and publish the processed entry back to Kafka under a new topic. Some topics
are also configured to send the entries to storage, like Elasticsearch or S3.

GRANT AGREEMENT No. 646578

https://goo.gl/forms/72fRjJKgZ8fa1KHF3

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 45

As described in Chapters 3 and 4, the general data collection framework will require a
dedicated adaptor component to each specific data source to account for its data model
and appropriate data transfer method. Each external data source may have a unique API
or message passing protocol, requiring individual adaptors. At the time of writing there
are five external data sources for distinct Triangulum modules that are implemented with
adaptors.

The primary behaviour of an adaptor is to download data from some external data
source and convert that data to JSON format. This ensures that all data passed from
the data acquisition subsystem enter the data ingestion subsystem (see Sec. 5.2.4) with a
uniform encoding and serialization format. In general, an adaptor is implemented as a
small Python script that is executed by one or more Systemd units. The adaptors either
fetch data at predefined intervals using a Systemd timer, or implements its own responsive
timing mechanism.

At an early stage of the project, the need for a variety of data transfer methods was
anticipated. These data transfer methods, or options, were offered to the Triangulum
partners:

• Option 1: Data provider hosts/provides a set of high availability brokers/queues to
which cloud data platform subscribes.

• Option 2: Cloud data platform hosts/provides a set of high availability brokers/queues
to which data provider may publish events.

• Option 3: Data provider posts data to RESTful API at cloud data platform.

• Option 4: RESTful API at data provider, cloud data platform performs frequent
pull requests.

• Option 5: RESTful API at data provider, cloud data platform performs frequent
poll requests.

However, implementation was done partly by prioritizing the available data sources.
The custom Python package, cdpadaptor, contains superclasses intended to simplify the
creation of new adaptors as new data sources become available. The subclasses in the
cdpadaptor package were constructed according to the offered options above, as well as
the initial experiences developing from the ground up adaptors for some available data
sources. The classes of the package are described in further detail immediately below.

5.2.2.1 CDPAdaptor

The main class in the cdpadaptor package is named CDPAdaptor, and all adaptor classes
inherit from it. The four adaptor subclasses in CDPAdaptor are:

• CDPPullingAdaptor

• CDPPollingAdaptor

• CDPQueueAdaptor

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 46

• CDPRESTAdaptor

These adaptor subclasses correspond to Option 4, Option 5, Options 1 and 2, and
Option 3, respectively. Note that the subclass CDPQueueAdaptor can be used for both
Option 1 and Option 2. In practice, Module 522 Energisentralen has been implemented
using the CDPQueueAdaptor, together with an MQTT broker (implemented as EMQTT)
hosted at the cloud data platform.

Each specific data source requires a specific adaptor, both to account for data source
idiosyncrasies (with regards to API/protocol or data structure) and to assign appropriate
topics to the data passed to the queueing and load balancing subsystem.

The CDPAdaptor class itself is never directly implemented as an adaptor for a specific
data source. Instead, any adaptor for a specific data source must be implemented from
one of the four subclasses. Which subclass is appropriate to implement an adaptor for a
given data source should be determined from the subclass descriptions below.

The cdpadaptor package and its class inheritance are illustrated in
Fig. 5.1. In the following discussion of the cdpadaptor package, refer to this
figure as well as the corresponding code in the cdpadaptor repository.

Upon initialization, CDPAdaptor takes a list of optional key-value parameters through
the argument **kwargs.

The optional parameter kafka_topic has a default value of undefined_topic and
gives the Kafka topic to which the specified adaptor forwards its data. Note that while
this parameter is technically optional, in practice it is mandatory. Note also that within
Kafka, the value of kafka_topic defines a queue, although elsewhere in the cloud data
platform, kafka_topic can be treated as an informative labelling of data according to
its data source (module identifier and name) and degree of pre-storage processing (raw,
sanitized, filtered).

A list of Kafka broker servers should be passed as an array of strings to the optional
parameter kafka_brokers. However, this is only necessary if the default set of Kafka
broker servers as defined in /tmp/kafka_brokers.json is to be overridden. If appropriate,
the default set of Kafka broker servers may alternatively be overridden by passing as a string
the path of an appropriate JSON file to the optional parameter kafka_brokers_path.

If logging_disabled is passed the value True, then log messages will be output to
stdout rather than written to the specified log file. This useful for development and
debugging of a data source specific adaptor.

The optional parameter forward_method is set to kafka by default, but can be
overwritten with one of the following valid strings: Valid forward_method strings are
kafka, which forwards to defined Kafka brokers, cmd, which forwards by printing to the
command line with stdout, or logging which will add the data to the log file with log
level debug. The alternatives cmd and logging are provided mainly for development and
debugging purposes.

This makes it possible to develop an adaptor for a new data source outside the data
center and without a Kafka instance by just using forward_method="cmd". When the
adaptor is ready it can reuse a well tested implementation of the forward_method.

The method forward_data(self, data_str) is implemented on the CDPAdaptor, and
in most cases this implementation is to be used. This method will check the variable
self.forward_method, and if it is set to cmd the data_str will be printed to the command

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 47

CDPAdaptor

forward_data(data:str)

serialize_data(data:str)

report_error(data:str)

report_info(data:str)

(str)get_raw_topic(topic:str)

kafka_topic : str

kafka_brokers : str

kafka_brokers_path : str

logging_disabled : bool

forward_method : str

kafka_producer : KafkaProducer

CDPPollingAdaptor

fetch_data()

(bool)data_is_updated()

url : string

tmp_timestamp_storage : string

CDPPullingAdaptor

fetch_data()

url : string

CDPHTTPAdaptor

(void)__init__(**kwargs)

http_serve_ip : string

http_serve_port : int

httpd : CDPHTTPHandler

CDPHTTPHandler

_set_response()

do_POST()

CDPQueueAdaptor

(void)__init__(**kwargs)

queue_host : string

queue_port : int

queue_topic : string

queue_client_id : string

CDPQueueMQTTAdaptor

__init__(**kwargs)

on_connect(c, ud, f, rc)

on_disconnect(c, ud, rc)

on_message(c, ud, msg)

on_subscribe(c, ud, mid, qos)

connect_mqtt()

queue_host : string

queue_port : int

queue_topic : string

queue_client_id : string

Figure 5.1: UML diagram for the cdpadaptor package.

line, if it is set to logging the data_str will be sent to the log file, and if it is set to
kafka the data_str is sent to the Kafka broker servers.

The method serialize_data(self, data) is also implemented on CDPAdaptor. How-
ever, all it does is forward the data to forward_data(self, data_str). This method is
intended to be overwritten by subclasses if necessary, i.e. where the incoming data is not
JSON format.

The static method get_raw_topic(prefix):string will take a string and append
_raw to the end of it, to return a topic name consistent with the project naming convention.
This will be further discussed in Sec. 5.2.3 and Sec. 5.2.4.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 48

5.2.2.1.1 CDPPullingAdaptor

For data sources that serve data in a stateless manner, the simplest way to get the data
is to download any data that the source is serving (to “pull”) at regular intervals as
appropriate for a particular data source. To accomplish this one can implement a subclass
of the CDPPullingAdaptor class.

The CDPPullingAdaptor is a subclass of CDPAdaptor and implements one extra
class variable, and one extra method. The class variable url can be passed upon ini-
tialization and indicates from where the data should be downloaded. The method
fetch_data(self):void uses the Python package requests to make a GET request to
the given url. Forfetch_data(self):void other types of requests, this method must be
overwritten. The response from the request is passed to the method serialize_data.
If the data is in JSON format and no pre-processing is needed, the serialize_data

method implemented on CDPAdaptor is appropriate. Otherwise, a different, appropriate
the serialize_data method should be implemented.

5.2.2.1.2 CDPPollingAdaptor

The CDPPollingAdaptor is intended for data sources where the data should only be
downloaded if it has been updated since the last time the data was downloaded. This is
appropriate if a data source does not serve new data regularly or predictably. This can be
handled either at the data source side or on the adaptor side. In some situations, the data
source will provide some registration function and return an identifier that the adaptor
will use with every request to keep track of what new data, if any, has been served.

The class CDPPollingAdaptor implements a class variable url that indicates where
to get the data, and also a class variable tmp_timestamp_storage which is a path to the
file that contains an identifying string (e.g. timestamp, or a hash) of the most recently
downloaded data. This represents the adaptor keeping track of the data source updates.

The method fetch_data(self):void is almost identical to its
namesake in CDPPullingAdaptor. However, in CDPPollingAdaptor,
fetch_data(self):void checks the return value of the class method
data_is_updated(self):Boolean.

If data_is_updated(self):Boolean returns True, the data will be downloaded, oth-
erwise the program will exit.

data_is_updated(self):Boolean first checks if there is a file in the path
tmp_timestamp_storage, and if so it parses the value in the file into a datetime variable
last_seen_dt. Then a HEAD request is performed against the given url and the value of the
header Last-Modified is compared against last_seen_dt. If the current content at the
url is more recent than the last seen content, the file in the path tmp_timestamp_storage

will be updated with the new timestamp and the function returns true.

5.2.2.1.3 CDPQueueAdaptor

In some cases the data is available by subscribing to a message passing queue system such
as Kafka or MQTT. In this case, the CDPQueueAdaptor should be used to implement the
data source specific adaptor. Two variants are possible: Either the adaptor subscribes to

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 49

an external queue broker server hosted by the data provider, or the cloud data platform
hosts a queue broker server to which the data provider publishes data.

Either way, the adaptor must subscribe to a queue broker server, and for this the
CDPQueueAdaptor subclass should be used to implement the adaptor. More specifically,
if the queue system is a MQTT queue, the subclass CDPQueueMQTTAdaptor (a subclass of
CDPQueueAdaptor) should be used.

CDPQueueAdaptor collects four extra parameters from the initialization. Again, these
parameters are technically optional, but in practice mandatory to implement a data source
specific adaptor. queue_host has a default value of "localhost" and refers to the host of
the queue broker that the adaptor should subscribe to. queue_port gives the port number
to use when connecting to the queue broker. The default value is 65534. queue_topic is
to be used as the topic to which the adaptor subscribes from the queue. queue_client_id
is a string that in most cases can be used to identify the adaptor at the queue broker. The
first three of the above four parameters must be set to match the corresponding values
at the queue broker. The queue_client_id lets the adaptor identify itself to the queue
broker.

As mentioned, in addition to the CDPQueueAdaptor, there is also a more protocol-
specific adaptor class, CDPQueueMQTTAdaptor, that is made specifically to subscribe to a
MQTT queue. Here we have a set of callback functions defined by the paho-mqtt Python
package. This package enables MQTT communication.

The paho-mqtt callback methods on_connect, on_disconnect, and on_subscribe as
implemented in CDPQueueMQTTAdaptor only report their respective event types to the log.
The paho-mqtt callback method on_message as implemented in CDPQueueMQTTAdaptor

is called when a message arrives on the topic to which the adaptor is subscribed. When
this happens, the message is forwarded using the given data source specific adaptor’s
forward_data method.

The CDPQueueMQTTAdaptor method connect_mqtt creates the client and connects to
the broker.

5.2.2.1.4 CDPHTTPAdaptor

The CDPHTTPAdaptor subclass enables the data provider to upload data to the cloud data
platform through HTTP POST requests. Various conditions may justify the use of this
subclass to implement and adaptor. For example, firewall restrictions at the data provider
excluding the other subclasses. Also, if the data source is updated irregularly, this subclass
represents an advantageous alternative to the CDPPollingAdaptor subclass. However,
this subclass requires the data provider to actively send data to the cloud data platform.
A dedicated port may be assigned to a data source specific adaptor implementing the
CDPHTTPAdaptor subclass. The implementation of the data source specific adaptor should
also specify the appropriate kafka_topic.

The initialization of CDPHTTPAdaptor collects the parameters http_serve_ip and
http_serve_port, which gives the interface and port that the server will receive data on.
The instance is then set to a global variable parent, meaning the instance is available
everywhere in the current Python context. An instance of Python standard class
HTTPServer is then instantiated and set to serve continuously. To handle responses,
the HTTPServer uses the CDPHTTPHandler class defined in CDPHTTPAdaptor.py. Upon

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 50

a POST request, this will extract and decode the body of the request, and pass it to
forward_data.

5.2.2.1.5 Executing the adaptors

All adaptors have a Systemd service that is responsible for executing the adaptor. Pulling
and polling adaptors, also have a Systemd timer that handles the timing of when to
execute the adaptor.

A Systemd service is defined by a configuration file, normally located at
/etc/systemd/system. This file can have many properties, the most important ones
for this use case will be presented here.

Listing 5.2.1: Contents of an adaptor systemd service file,
m432_vialistraffic.service.app.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

This is the service file for the data source m432_vialistraffic. The first block,
[Unit] can have properties common for all units, in this case only the description is
defined in this section. In the [Service] block the execution properties are defined. In
this case, ExecStart gives the command to execute to start the service, and it will be run
as the User and Group defined by the values of their respective keys.

This file service definition is very simple, this is because m432_vialistraffic is a
pulling adaptor, and the service is thus started at intervals by a timer unit.

Listing 5.2.2: Contents of an adaptor Systemd timer file,
m432_vialistraffic.timer.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

This timer unit will start the service every 5 minutes, with an accuracy of 1 s. The
accuracy can be set lower if needed. The service unit will start the adaptor, which in the
case of pulling and polling will exit after one data download operation.

In the case of a queue or HTTP adaptor, the adaptor is listening for incoming
connections from the data source. The service unit will then start the adaptor and make
sure it is running. One configuration property that is added in this case is Restart=Always,
enabling Systemd to restart the service if it for some reason dies.

For example, in the case of the adaptor for Module 522: Central energy plant (Subtask
5.2.2), and MQTT broker at the cloud data platform was required, and the data were
published from the data source to that broker. Here, the timing of incoming data is
controlled by the data source/data provider and may be intermittent.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 51

Some data sources are continuously available for data transfer requests, but only update
the available data periodically. In these cases, the timing of the data transfer is controlled
by the adaptor. In practice, the useful interval for fetching data is constant for a given
data source, based on the frequency of updates on the data source side, and the desired
granularity on the cloud data platform side. Storage space is effectively not a limitation
in the current implementation, and maximum time resolution without duplicates in the
collected data is desired. For a continuous sensor type data source, some appropriate
constant periodic sampling rate should be implemented.

Each adaptor has three functions: data transfer/fetching, re-serialization, and forward-
ing. Data transfer and re-serialization require customization to a specific data source to
ensure compliance with the rest of the data collection framework, whereas forwarding is
a standard sub-component that feeds the data forward into the next stage of the data
collection framework.

Regarding re-serialization, note that different data sources are heterogenous in various
aspects. One aspect of data source heterogeneity is serialization. Data may be serialized
with codecs such as XML, JSON, CSV, or proprietary binary formats. To adapt the
various data sources to the one data collection framework, all incoming data from external
data sources is uniformly re-serialized to JSON if needed, which is amenable to ingestion
by Logstash.

Each external data source may have a unique API or message passing protocol, which
in turn requires the development of an individual adaptor to collect data from that data
source.

All adaptors inherited from the Adaptor class are implemented with re-serializing and
data forwarding methods as shown in Fig. 5.1. In addition, each adaptor will have the
properties of topic name.

Each data-source-specific adaptor inherits from an Adaptor subclass that reflects the
data transfer options selected by the respective data providers in the data intake form. For
example, KolumbusVMAdaptor inherits from the PollingAdaptor subclass of the Adaptor
class. The data-source-specific adaptor instantiates itself.

5.2.3 Queueing and load balancing

Section 4.2.2 discusses how queueing and load balancing is a required function in the
UiS module implementation, and why Kafka was selected as the technology basis for this
component. The role of this component is to buffer the data that is captured with various
adaptors from their respective data sources, and to dispatch the data to the data ingestion
component.

The data stored in a Kafka cluster is distributed over partitions, which are distributed
over the nodes (servers) in the cluster. Each node usually holds several partitions. Each
Kafka node can handle the data operations and requests for the partitions it holds. The
data belonging to one specific topic in Kafka can be divided among several partitions, and
thus several nodes. All partitions in the cluster are replicated across several nodes to make
the system fault tolerant. Each partition in the cluster has one node elected as leader,
and the leader will handle all read and write operations for that partition. Should the
leader go down, another node will be elected leader. Leader election and communication

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 52

between Kafka nodes is handled by Zookeeper.
These nodes run on separate computers or VMs. Thus, they have different IP addresses

and accept communication through a specific port, where the default port is 9092. A
Kafka node decides on the message size limit (configurable), which can be used to avoid
performance bottlenecks when messages are too large. A Kafka node also decides on
the period of time a message should be kept (also configurable), which can be used to
provide a recovery buffer, since as long as they are kept, the messages can eventually
be forwarded to the consumer. In the UiS module implementation, this mean the data
ingestion component, implemented with Logstash.

Furthermore, a Kafka node decides on the replication factor of the messages it receives.
This means how many copies of the received messages should be held on other nodes. This
is also how Apache Kafka supports fault tolerance. To guarantee a certain replication
factor, a Kafka node must be able to communicate with other Kafka nodes and hence
Zookeeper.

This is managed by the deployment strategy in Ch. 6, and simply consists of providing
a list of Zookeeper nodes and their IPs to each Kafka node. Because a Zookeeper node
can also fail, Zookeepers should also be deployed as a cluster. Put together, a minimum
set a Kafka nodes to achieve a replication factor of 2 when one Kafka node fails has to be
at least 3 Kafka nodes. Likewise, to be able to determine a partition leader, a Zookeeper
quorum must be reached. To tolerate the failure of a single Zookeeper node, the Zookeeper
cluster needs at least 3 nodes to reach a quorum.

All the data acquired by the adaptors is forwarded to one of several Kafka brokers,
selected in a round-robin fashion. Kafka is then in charge of dispatching the data to the
Logstash nodes for preprocessing and ingestion downstream towards storage in Elasticsearch
and S3/Ceph Object Storage. The adaptors publish data as messages to Kafka in topics
named according to the specific data source. On the other side, the Logstash nodes are
subscribed to specific topics among those that have dedicated adaptors implemented and
running as a service.

5.2.3.1 Parameters affecting fault tolerance

The queue and load balancing component has Kafka parameter values that affect fault
tolerance. These parameters are shown in Listing 5.2.3.

Listing 5.2.3: Contents of Kafka server configuration file, cloud-data-

platform/src/dep-openstack/salt/configs/kafka/server1.properties.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

Note that all the Kafka nodes have the same parameter settings as in the
server1.properties file shown in Listing 5.2.3, except for those parameter relating
to that node identifying itself to other nodes in the cluster. For example, broker.id
and advertised.listeners are specific to the Kafka node with those values, but all the
other parameter values should be the same across all the Kafka nodes in a given cluster.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 53

Note also that the cluster-specific sets of IPs reflect a specific intended deployment with a
specific set of nodes in each component cluster/functional group.

Each topic consists of a stream of messages or records. These messages are stored
across one or several partitions which each maintains a sequence of messages. Each
unique message is stored in only one partition. However, the partition is replicated across
several Kafka nodes. Only one Kafka node is the leader of the partition and manages
read/write requests, while the other Kafka nodes replicate that partition passively to
ensure fault-tolerance and obey read/write requests passed on via the leader.

Thus, the number of partitions and replication factor are two parameters affecting the
component fault tolerance.

The zookeeper.connect parameter in the above listing is crucial for the managed
leader election of the Kafka cluster. Each Kafka node must be informed of the Zookeeper
cluster that manages leader election for the Kafka cluster. In the above listing, zk1, zk2,
and zk3 contain the IPs of the nodes in the Zookeeper cluster.

The log retention period (log.retention.hours) sets how long messages in a partition
is kept. This parameter is needed by Kafka because it is stateless, meaning the consumers
must maintain a state regarding what messages have been consumed from the Kafka queue.
Kafka simply deletes messages that have been held in the queue for a duration equal to or
greater than the log retention period.

The benefit of this stateless queue is that despite failures among Kafka nodes or
consumer nodes, the available history of messages is always complete from the present
moment and back to one log retention period ago. Thus, this parameter affects the
component attribute recoverability (resiliency or ability to recover from failure) for the
consumer of the queue. In the module implementation, this means supporting the Logstash
component responsible for the function of ingestion and preprocessing.

As for message size (or “maximum size of a request”), this is limited by the setting
socket.request.max.bytes, which supports the attribute resilience by protecting against
out-of-memory failure on the Kafka node. This means socket.send.buffer.bytes and
socket.receive.buffer.bytes decide the size of the packets into which a message is
divided when Kafka nodes send and receive these messages, respectively.

5.2.3.2 Logstash parameters relating to Kafka

As illustrated in Listing 5.2.4, subscribing nodes are identified with a group_id which is
subscribed to a particular (set of) topic(s).

When a new message is to be published on a given topic, only one of the nodes in a
subscriber group will be sent a copy of that message. This is a consumer feature. Thus
the consumer must determine its own load balancing strategy.

Listing 5.2.4: Selected contents of Logstash pipeline
configuration file, cloud-data-platform/src/dep-

openstack/salt/configs/logstash/conf.d/coinbase.conf.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 54

$ sudo -H pip3 install .

5.2.3.3 Load balancing the publishing adaptors

Recall that a CDPAdaptor uses the package cdpadaptor to forward data to Apache Kafka
nodes. This is done by calling the method forward_data(data:str) as shown in the
class diagram from Figure 5.1.

The Kafka server list in /tmp/kafka_brokers.json is part of the cloud data platform
and is managed by the deployment strategy as explained in Ch. 6. This list of nodes
and IPs defines the queuing and load balancing component to which CDPAdaptors will
load-balance publish/send operations in a round-robin manner. This is provided by the
official kafka package for Python.

5.2.3.4 Load balancing the subscribing Logstash nodes

This section discusses how the load balancing component consisting of the Kafka cluster
interact with the ingestion component consisting of the Logstash nodes.

Listing 5.2.5: Selected contents of Logstash pipeline configu-
ration file - subscriber group, cloud-data-platform/src/dep-

openstack/salt/configs/logstash/conf.d/coinbase.conf.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

In Listing 5.2.5, we show one section of an example
Logstash pipeline configuration file (cloud-data-platform/src/dep-
openstack/salt/configs/logstash/conf.d/coinbase.conf) where kafka1, kafka2,
kafka3 and represent the IPs of the Kafka nodes in the cluster.

5.2.4 Data Ingestion

After acquiring data from external data sources and placing these in the queueing and
load balancing component, the data ingestion component can consume the data points
as messages from Kafka topics that Logstash nodes subscribe to, in order to ingest the
data into storage. For each data source, a dedicated Logstash pipeline configuration file is
defined under cloud-data-platform/src/.../configs/logstash/conf.d.

Logstash prepares the data for storage. All incoming data exist in three stages of
preparation: raw, sanitized, and filtered. The data arrives as raw data, and is then
sanitized before it is filtered. Data can be obtained from the Kafka queue at any of these
three stages.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 55

5.2.4.1 Sanitizing

The first step of data preparation is here called sanitizing and it will convert data that
is in state raw to state san. Logstash will here subscribe to the Kafka topic for a data
source that ends with _raw, sanitize the data entry before publishing it back to the Kafka
queue with the topic ending in _san.

This processing step is intended to do the operations needed for all possible uses of the
data. For example, anonymization may in theory be feasible at this stage. This processing
step is supposed to be done before storing any data. The data that has topic ending with
_san is intended to be the closest to the raw data that can be legally or safely used in the
system.

Logstash will store all the data ending with _san to S3/Ceph Object Storage and
Elasticsearch.

5.2.4.2 Filtering

The filtering step of the data preparation is meant to do more intrusive and application
specific data transformation, for example converting values and types belong here. Since
the data was stored in the last step, it is safe to alter the data in this step, since it then is
reproducible.

Data entries with topic ending in _filtered will be stored to Elasticsearch.

5.2.5 Data Storage

5.2.5.1 Indexing

The primary data storage component is implemented using Elasticsearch, which en-
ables the indexing of data points — passed as messages from Logstash — into search-
able document collections. Elasticsearch is also distributed and each node must be
configured with the list of nodes that constitute its cluster, which is set in the
/etc/elasticsearch/elasticsearch.yml file on the node.

Listing 5.2.6: Uncommented contents of Elastic-
search configuration file, cloud-data-platform/src/dep-

openstack/salt/configs/elasticsearch/elasticsearch.yml.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

Listing 5.2.6 shows an example Elasticsearch configuration file. The configuration of
the cluster can be made very simple, although settings of the Elasticsearch installation
with respect to each host node are also crucial. These include dependencies on correct
Java Developer Kit versions and appropriate memory allocations on the host node.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 56

5.2.5.2 Object Storage

S3/Ceph Object Storage is provided directly by CCP. Data is passed to Ceph Object
Storage primarily for backup and archival purposes.

5.2.5.3 Monitoring

For a running system, there are a large number of events that can cause it to stop running,
or perform lower than expected. To keep track of the system’s general performance, and
wether it is running or not it can be nice to monitor the various aspects. Self monitoring
of the system is done by collecting, analyzing and visualizing three types of data:

• Application logs

• Application metrics

• System metrics

5.2.5.3.1 Application logs

All applications that run in the system produce log files that are stored locally at each
virtual machine. By using a small application called Filebeat from the Elastic stack, we are
able to watch these log files and send every new entry immediately to Logstash. Logstash
is then configured to parse the text formatted log entries by using grok filters. This will
convert the log entries to structured data so that each field can be used for searching later.
The parsed log events can then be indexed in Elasticsearch. This makes debugging easier
than if one had to ssh into each machine to look at log files. It also makes it easy to set
alarms that can alert developers when something unexpected happens. For example, if
an error message is produced at a node, developers can get a chat message and be able
to respond to the event much faster than previously possible. These logs can also be
used to generate visualizations that show how the system is operating, and the number of
messages for the various error levels can be a good measurement of how well the system is
operating.

5.2.5.3.2 Application metrics

Some of the applications in the system also produce application metrics. These are
measurements of application performance and similar that are reported by the application
in real time. Collecting these metrics make it possible to visualize the actual, real time
performance of each application in the system. Sudden changes in the various metrics can
in some cases be as sign of something not behaving normally and thus cause an alert to
developers. This can leverage fixing problems before they turn into real problems and
error entries in the applications log.

5.2.5.3.3 System metrics

Every virtual machine in the system is also monitored by a small application called
Collectd, short for collect daemon. This application will collect system values at predefined

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 57

intervals and report them to Logstash which in turn will forward the data to Elasticsearch.
This kind of metrics can give valuable information like how much free memory and disk
space each VM has, how much CPU any process is using, or how much traffic is going in
and out of each of the network interfaces. This is also a kind of preventive monitoring, in
that it makes it possible to catch and fix problems before they become dangerous, critical,
or harmful. For example a disk that is filling up might be forgotten if it was not for
Collectd’s constant monitoring of the free space on all disks. Applications that seem slow
and unresponsive might be running on a VM that has little or no available memory.

5.2.5.3.4 Visualizing

Visualizations of metrics are created to give developers and other users a quick way to
identify the system status and performance.

5.2.6 Data Access

The Elasticsearch API is a RESTful API that provides access to the collected data, as well
as cluster status information. The API can be accessed with CLI, scripts (e.g. Python
scripts), Kibana, and the Elasticsearch-Hadoop connector, to name the most relevant
methods for the UiS module implementation.

While S3/Ceph Object Storage is operational and in use by data ingestion processes,
the development of processes accessing the data subsequently from this secondary data
storage component has not been a priority so far.

5.3 Implementation division 2: Data processing

framework

5.3.1 Exploratory Data Analysis Tools

The most user-friendly component of the exploratory data analysis tools is the Kibana
GUI. Kibana accesses the Elasticsearch cluster determined in the configuration file /etc/

kibana/kibana.yml on the node where Kibana installed.

Listing 5.3.1: Uncommented contents of Kibana configuration file, cloud-data-
platform/src/dep-openstack/salt/configs/kibana/kibana.yml.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

Listing 5.3.1 shows the Kibana configuration file, which only needs to specify a single
Elasticsearch node through which Kibana can access the data on the whole Elasticsearch
cluster. Note that the Kibana configuration also can specify the tile map that can be used
to visualize geography related to GPS position data.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 58

The more compute-intensive implementation of the data processing framework, is
implemented as co-located JupyterHub and Spark clusters. The JupyterHub web applica-
tion provides multi-user sessions of Jupyter Notebook. This capability arguably makes
the Spark computing system user-friendly enough for exploratory data analysis. The
JupyterHub/Spark cluster is then enabled to provide PySpark sessions with as shown in
Listing 5.3.2.

Listing 5.3.2: Enabling PySpark, cloud-data-

platform/src/jupyspark/salt/configs/pyspark/kernel.json.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

Note the need to declare a Spark cluster master, and for Spark worker nodes to be
configured with IP (10.0.0.17 in this example) and port (7077 by default) of the Spark
master node. However, the Spark master node does not need to be configured with
information about Spark worker nodes. Thus the Spark worker nodes can be created and
join the Spark cluster without interfering with the Spark master configuration.

The Hadoop-Elasticsearch connector file, elasticsearch-hadoop-5.5.1.jar file is
downloaded and made available to each of the Spark worker nodes with a local copy in
the directory /opt/sparkjars/, enabling the loading of Elasticsearch API query results
into the Spark data structure Resilient Distributed Datasets.

Another aspect of Spark that enhances its applicability to exploratory data analysis is
that it is also supported with a library (Spark SQL) for working with data in a similar way
to Python library pandas, with DataFrames on top of the Resilient Distributed Dataset
structure.

5.3.2 Batch Processing and Modelling Tools

The use of Spark for the components of exploratory data analysis, batch processing,
and modelling are distinguished in Sec. 4.6.1, Sec. 4.6.2, and Sec. 4.6.3, respectively.
However, in contrast with JupyterHub makes Spark user-friendly enough for exploratory
data analysis, the CLI command
$ /bin/spark-submit script.py can be used to run a prepared set of PySpark commands
on the Spark cluster. This is the most appropriate approach to both batch processing and
modelling applications after initial development.

Spark is also supported with libraries for machine learning (MLlib) and processing
real-time streaming data (Spark Streaming), which may be especially appropriate for
Batch Processing and Modelling applications, respectively. However, the Spark library for
processing data with a graph structure, GraphX, is not well supported for the PySpark
API compared to the Java and Scala APIs.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 59

5.4 Implementation Summary

This chapter has presented selected details of the implementation of the components
implemented in the present work. In general, the technologies chosen must be configured
tointeractappropriately. Thecomponentsimplementedasdescribedinthischaptercan
be deployed in various ways, which is further elaborated in Chapter 6.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 60

Chapter 6

Deployment

6.1 Overview

Given a computing problem, a software solution can be developed through the steps of
architecture, design, and implementation. With such software implementation completed,
the problem can only be satisfied in practice if the software is installed and run on some
computing hardware. This constitutes deployment.

The software implementation may be installed and configured manually, taking into
account the pre-existing conditions, such as: The computing hardware, its operating system,
other software, and the communication network. However, this is a time-consuming, error-
prone, and laborious task.

In reality, a modern development process involves repeated iterative cycles of devel-
opment, deployment, and testing. In recent years, this has lead to a tighter coupling
of software development and operations activities, which combine into a practice called
DevOps.

Thus, if the deployment process can be automated, time can be spared and errors can
be solved once rather than repeatedly.

One condition for automation is that the hardware and software context to which an
implementation will be deployed get standardized. Consistent choice of virtual machine
configuration and operating system satisfies this condition.

More specifically, deployment may involve the processes that download, install or
upgrade, configure, and set up persistent services based on the components in the imple-
mentation.

For the systems presented here, deployment occurs in the context of installing the
software implementation on a pool of distributed computing hardware resources. The
interface between the deployment and the hardware resource pool may be a cloud computing
platform. In the present work, this cloud computing platform (CCP) was based on
OpenStack.

In this chapter, as well as in Chapter 5, specific files are discussed by referencing the
path of the file with respect to the repository. For example, cloud-data-platform/src/
contains the directories containing the deployment-specific implementations of the cloud
data platform.

This chapter details the automation of processes that perform deployment of the cloud

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 61

data platform and data analytics toolkit to the cloud computing platform. Sec. 6.2 further
details the approach to the deployment work and the pre-existing technologies used. From
the outset, both the cloud data platform and data analytics toolkit modules have been
architected for a distributed computing (i.e. multiple-node) implementation. At the
same time, the development process naturally started with simple working systems, and
increased in complexity as the required properties depending on distributed machines were
implemented. The subsequent sections in this chapter detail the corresponding stages of
increasing complexity in deploying the system. Sections 6.3 to 6.4 go into detail about
the progressively more complex deployment schemes. Finally, Sec. 6.5 addresses how
alternative deployments may be customized as needed.

6.2 Methodology and technology

6.2.1 Methodology

The approach to deployment in the present work is based on the following assumptions:
Relative to the deployment, the implementation exists as a static code repository. In
other words, this project does not undertake continuous deployment. However, the
implementation is deployed to some computing resources – hardware or virtual machines –
to instantiate the implementation as an active system. This means that the implementation
may be deployed to an indefinite number of computing resources, and is thus capable of
producing an arbitrary number of instantiations.

The present work configures deployment for automatic execution, thus enabling an
arbitrary horizontal scaling of deployments with constant work. A good deployment system
is one that is general enough to be easily reproducible, yet customizable. The methodology
to achieve this consists of configuring deployment as machine-readable recipes for required
conditions and software. These machine-readable recipes can be distributed to the nodes.
The machine-readable recipes for deployment must be written in a syntax readable by
some appropriate interpreting software. This interpreting software must itself be deployed
to the computing resources first. In addition, the interpreting software may work as a
distributed system, and may require the assignment of some master node(s) to coordinate
the deployment across the multiple targets. The multiple target nodes of the deployment
may consist of hardware machines or virtual machines.

6.2.2 Technologies

The machine-readable recipes for deployment must be readable by some appropriate
interpreting and deploying software. The present work has relied on SaltStack software
to mediate the various system deployments. Thus, in general the machine-readable
deployment recipes have been written as .sls files, which are native to SaltStack. Possible
alternatives to SaltStack include Ansible, Chef, and Puppet. SaltStack uses a declarative
approach and defines a state which the machines should enter, as opposed to an imperative
form of recipes used by e.g. Puppet or Bash scripts. SaltStack itself is deployed to the
relevant nodes using a Bash script, and the nodes are defined as Salt master and Salt

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 62

minion nodes. The Salt master node(s) accept Salt minions as part of their cluster, and
establishes SSH sessions from the master to each of the minions.

These encrypted channels allow the Salt minion nodes to trust directives from the Salt
master node(s). Subsequently, the master nodes direct the minion nodes to enter a state
described by some machine-readable deployment recipes (.sls files). These states may
be described by a combination of .sls files, and different states may describe different
functionalities that the various minion nodes should assume. In the simplest case, a node
may act as both Salt master and Salt minion, and deploy to itself the implementation
of cloud data platform and data analytics toolkit. This is further described in Sec. 6.3.1
and Sec. 6.4.1. However, multi-node clusters can also be deployed to develop and take
advantage of the fault-tolerant, distributed paradigm of the technologies in the module
implementations. This is further described in Sec. 6.3.2 and Sec. 6.4.2.

Vagrant is intended to support software development by facilitating rapid and portable
replication of a software development environment. In combination with SaltStack, Vagrant
enables simplified, programmatic provisioning of virtual environments on a computer. For
local physical machine hosts, the present work has used Vagrant in combination with
VirtualBox as a hypervisor. Both Vagrant and VirtualBox are open source, available under
the MIT license. Alternative hypervisors (not necessarily open source) that can be used
with Vagrant include Docker (remove Docker), HyperV, and VMWare. The combination
of Vagrant and VirtualBox represents a convenient context to develop and test deployment
recipes using SaltStack. Virtual private networks are enabled and support clusters of
multiple virtual machines. However, this is not expected to support a stable production
environment.

For a stable production environment, the module implementation is deployed to virtual
machines provisioned with OpenStack. OpenStack is a cloud computing platforming
toolkit that can be used to manage cloud computing resources. In the Triangulum project,
the cloud data platform and data analytics toolkit modules are instantiated on the UiS
cloud computing platform (CIPSI computing platform, CCP), which uses, among other
technologies, OpenStack to manage the data centre hardware computing and network
resources. The hypervisor used with OpenStack on CCP is called KVM (Kernel-based
Virtual Machine).

6.3 Local virtual machine environment with Vagrant

and Virtualbox

6.3.1 Deployment to single VM locally

This subsection will discuss the simplest case of deployment using SaltStack. Here, the
module implementation is deployed to a single Vagrant virtual machine set up as its own
Salt master and minion.

This deployment scheme was developed concurrently with the overall implementation,
especially the data collection framework (see Sec. 5.2). This enabled the initial development
of the implementation to happen with minimal attention to networks and fault-tolerance,
while at the same time using fault-tolerant technologies. This helped to establish a baseline

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 63

functional system that is also intrinsically scalable to a multiple node deployment.
The prose descriptions in this subsection will use file paths relative to the repos-

itory directory cloud-data-platform/src/, since the contents of both cloud-data-

platform/src/dep and cloud-data-platform/src/vagrant are used. For example, this
subsection may discuss the files cloud-data-platform/src/dep/salt/top.sls and
vagrant/Vagrantfile, and in all prose descriptions, these paths will be given relative to
cloud-data-platform/src/. This is done both for brevity and clarity.

The case of using Vagrant and VirtualBox on a local computer to provision a virtual
environment with a single node is illustrated in Fig. 6.1. The cloud data platform and
data analytics toolkit can be deployed to the single, locally hosted virtual machine.

Figure 6.1: Provisioning single VM node locally.

6.3.1.1 Key files

In the file cloud-data-platform/src/vagrant/Vagrantfile, shown in Listing 6.3.1, the
code (omitting comments) provisions a single virtual machine with Vagrant and VirtualBox,
and deploys the cloud data platform to it using SaltStack.

Listing 6.3.1: Configuration for provisioning a single VM node locally, cloud-data-
platform/src/vagrant/Vagrantfile.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

The above file represents a recipe to create a virtual machine which we call “mas-
terless” within the Vagrantfile, but once instantiated the VM will have the hostname
saltmaster.local. The VM is to be provisioned with 2 virtual CPUs, 4 GB memory,
and Ubuntu 16.04 operating system. The virtual machine synchronizes with two folders
on the host machine: cloud-data-platform/src/dep to get the cloud data platform
implementation to be deployed on a single node, and ../../vstorage which can be used
to store raw data as backup files. A private virtual network is defined to forward ports
between the external and internal networks. The Kibana web interface is made accessible
through port 8080, and Elasticsearch through port 9201.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 64

Next, the SaltStack deployment is configured for the masterless VM. SaltStack is
used to deploy the implementation to the VM upon instantiation, but SaltStack will not
subsequently be available on the masterless VM. Note that the Vagrantfile provisions
a VM which is “masterless”, meaning the same node is both the only master and only
minion with respect to this deployment.

The Vagrantfile refers to a minion configuration file shown in Listing 6.3.2 with three
uncommented lines:

Listing 6.3.2: Configuration for single VM node as minion, cloud-data-

platform/src/vagrant/etc/minion.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

The Vagrantfile also refers to a master configuration file shown in shown in Listing 6.3.3
with two uncommented lines:

Listing 6.3.3: Configuration for single VM node as master, cloud-data-

platform/src/vagrant/etc/master.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

These latter two files represent a near-minimal configuration to support the being its
own master and slave. Informally, this can therefore be called a “masterless” In other
deployments, the minion and master files of VMs participating in a multi-node cluster
would require more details to organize the relationships that enable deployment using
SaltStack.

In the above Vagrantfile, the line salt.run_highstate = true applies the state
described in the file top.sls (shown in Listing 6.3.4) and its dependencies to the masterless
VM.

Listing 6.3.4: Salt state for local single VM node deployment, cloud-data-

platform/src/dep/salt/top.sls.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

Each of the lines indented under ’*’ refer to another .sls file in the same folder.
These are called in the order they appear above, when the ’*’ state is applied to a machine.
This section will briefly go through some of these files called by top.sls, starting with
common.sls, shown in Listing 6.3.5.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 65

Listing 6.3.5: “Common” state for local single VM node deployment, cloud-data-
platform/src/dep/salt/common.sls.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

The common.sls file is the first called in top.sls because it ensures the installation
of packages on the machine that are necessary for subsequent .sls files to be correctly
applied. The packages include htop and nload serve monitoring functions, which is
helpful for troubleshooting. The package rubygems was required to install the logstah-
jmx plugin for monitoring Apache Kafka. Java Developer Kit (openjdk-8-jre) and
apt-transport-https are included as a pre-requisite for some Elastic stack installations.

This provides some insight into the structure and function of .sls-files. For each of
the following lines in top.sls, a corresponding .sls file in the same folder is called and
applied to the machine. Based on these files, packages are installed, folders and files are
managed, and Systemd services are set to run. We will address the these files with only a
brief description of each.

kafka.sls sets up the load-balancing component of the cloud data platform as a
running Apache Kafka instance. This is in turn managed by a Zookeeper Systemd service.

elasticsearch.sls installs Elasticsearch and copies a pre-configured YAML file from
the repository. Then a Bash script, createindices.sh is used to index expected data
sources. These have files with corresponding Elasticsearch mappings stored in the
cloud-data-platform/src/dep/salt/createindex folder.

logstashprepare.sls sets up folders and imports configuration files that are needed
for the ingestion component of the cloud data platform, Logstash. This preparation is
performed before Logstash is actually installed, and even before the general data acquisition
state acq.sls, cdpadaptor.sls, and the data source specific states mXYZ-***.sls are
applied. logstashprepare.sls sets the stage for the subsequent components by inserting
various configuration files, directories, and a script used by adaptors to optionally store
data to the S3 object storage. This salt state file begins the sequence of preparations
leading up to logstash.sls. These preparations include deploying the data source specific
adaptors which will be connected to the general data collection framework.

acq.sls ensures that the necessary standard Python versions and packages are in-
stalled. Also, the acq.sls file places into the target VM a PollingClient.py script that
implements a parent class for adaptors that poll for data from some source, fetch the data,
and forward the data to either Logstash or Kafka. This legacy implementation precedes
the cdpadaptor implementation of data source specific adaoptors. PollingClient.py is
used in the current m531_kolumbus_vm adaptor, although this approach is deprecated in
favour of cdpadaptor and the m531_kolumbus_vm adaptor will be updated in future work.

cdpadaptor.sls installs the custom Python package from its own repository. The
cdpadaptor package was developed in this project, and is discussed in Sec. 5.2.2.1.

The data source specific adaptors mXYZ-*** are each represented by an .sls file, that
in turn each applies a pre-configured Logstash pipeline configuration file, a (cdpadaptor)

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 66

implementation of the specific adaptor as a Python script, a systemd service, and a systemd
timer. Note that a timer is not included in the case of CDPQueueAdaptor implementations,
such as m522_energisentralen, nor in the case of CDPHTTPAdaptor implementations.

logstash.sls installs Logstash with a pre-configured YAML configuration file, in-
cluding the JMX input plugin, which enables the collection of remote Java applications’
metrics. In the cloud data platform, the JMX input plugin is used to monitor Kafka.

kibana.sls and filebeat.sls install Kibana and Filebeat, respectively, each with a
pre-configured YAML configuration file, and make these run as systemd services.

Finally, collect.sls installs and sets to run as a service the collectd logging of machine
self-monitoring. Note that the configuration files of Filebeat and collectd are not set up
for Vagrant deployment. In the Vagrant single-node deployment discussed in this section,
the collectd service will appear silent to the Filebeat service listening for self-monitoring
data to forward to Elasticsearch.

6.3.1.2 Operations to enact the deployment

In the system where Vagrant is installed, the single node deployment can be done by
going to the location of the above Vagrantfile and entering the commands shown in
Listing 6.3.6 (after the chevron $) in the command prompt.

Listing 6.3.6: Commands to enact deployment of single VM node deployment in a
local environment.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

Vagrantfile takes care of the deployment described by the key files.

6.3.1.3 Notes on context

For further details, refer to the specific files in the repository, the appropriate sections in
Ch. 5, and the official documentation of the corresponding software.

Note that the same SaltStack files, i.e. the contents of cloud-data-

platform/src/dep/salt can be used to deploy the same implementation to any single
physical or virtual machine with a compatible operating system (default: Ubuntu Xenial
16.04) and SaltStack installed.

6.3.2 Deployment to multiple VMs locally

This subsection will discuss a slightly less simple case of deployment using SaltStack. Here,
the module implementation is deployed to multipole Vagrant virtual machines set up
with one Salt master and several Salt minions. Both as a Salt cluster and as an active
deployment of the implementation with articulated functional groups, this deployment
case is most notably different from the single node deployment in the previous by virtue

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 67

of the requirement to coordinate the communication between the nodes in the cluster to
exploit the distributed computing paradigm of the various technologies.

The case of using Vagrant and VirtualBox on a local computer to provision a virtual
environment with multiple nodes is illustrated in Fig. 6.1.

The prose descriptions in this subsection will use file paths relative to the repository
directory cloud-data-platform/src/dep-openstack, since the contents this directory
specifies both the necessary provisioning with Vagrant and the deployment using SaltStack.
For example, this subsection may discuss the files salt/top.sls and Vagrantfile, and in
all prose descriptions, these paths will be given relative to cloud-data-platform/src/dep-
openstack. This is done both for brevity and clarity.

Figure 6.2: Provisioning multiple VM nodes locally.

Sec. 6.3.1 presented how to deploy CPD on a single machine using vagrant.
For a multiple node deployment, Vagrant can automate the provision of a set of virtual

machines and their private network. Note that Vagrant should primarily be used for
testing in the course of development, and not in production. In the present case, we have
limited the deployment to 16 VMs. These VMs must all have salt-minion installed and
should be known to a salt-master node.

6.3.2.1 Key files

In the Vagrantfile for this deployment, shown in Listing 6.3.7, the 16 VMs are provisioned
with Vagrant and VirtualBox, and deploys the multi-node version of the cloud data
platform to these VMs using SaltStack. The Vagrantfile reads the file cloud-data-

platform/src/dep-openstack/servers.yml, which lists VM names and their respective
IP addresses as provisioned in a private network by Vagrant. This creates a SaltStack
cluster.

Applying the distributed set of Salt recipes cloud-data-platform/src/dep-

openstack/salt/*.sls from the master node will deploy a distributed implementation
to the virtual cluster.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 68

Listing 6.3.7: Configuration for local multiple-VM-node deployment, cloud-data-
platform/src/dep-openstack/salt/Vagrantfile.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

As mentioned, the above Vagrantfile calls servers.yml from the same directory,
which contains the following listing to specify the names and private IPs of the VMs as
shown in Listing 6.3.8.

Listing 6.3.8: Node name and IP confiration for local multiple-VM-node deployment,
cloud-data-platform/src/dep-openstack/salt/servers.yml.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

The Vagrantfile also calls /vagrant/cloudInit/master.sh and
/vagrant/cloudInit/minion.sh. Note that the mention of /vagrant/ here refers to
the directory where the mentioning Vagrantfile exists. In terms of the implementation
repository structure, this folder is cloud-data-platform/src/dep-openstack.

First, consider /vagrant/cloudInit/master.sh shown in Listing 6.3.9.

Listing 6.3.9: Bash file to install Salt master for local multiple-VM-node deployment,
cloud-data-platform/src/dep-openstack/cloudInit/master.sh.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

This simply installs salt-master to the VM.
Next, consider /vagrant/cloudInit/minion.sh shown in Listing 6.3.10.

Listing 6.3.10: Bash file to install Salt minion for local multiple-VM-node deployment,
cloud-data-platform/src/dep-openstack/cloudInit/minion.sh.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

The above Bash script is called by the Vagrantfile with arguments master_ip and
hostname from the servers.yml file. Note that the argument master_ip is passed directly
via the Vagrantfile to the Bash script script, while hostname is collected from the VM
that was provisioned with that host_name from servers.yml by Vagrantfile.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 69

In the sequence of steps described in Sec. 6.3.2.2, the files described above in this
section are accessed in the first two commands, identical to those required in Sec. 6.3.1.2.

However, the multiple node deployment requires a further command to be given on
the Salt master node of the virtual cluster: The command
$ sudo salt ’*’ state.apply given on the Salt master node calls a top.sls file (similar
to the one described in Sec. 6.3.1.1) which has been provisioned along with the master
node itself according to the Vagrantfile. This means the Salt master has the following
file locally as /srv/salt/top.sls, which on the repository is stored at cloud-data-

platform/src/dep-openstack/salt/top.sls, shown in Listing 6.3.11.

Listing 6.3.11: Top Salt file for local multiple-VM-node deployment, cloud-data-
platform/src/dep-openstack/salt/top.sls.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

In the above file, we see the Salt minions are targeted with the hostnames provisioned
by Vagrant based on the specifications in servers.yml. For example, zk1, elastic3, and
logstash3. Just as in the case of a single VM provisioned locally, the salt files describe
a sequence of requirements that is enacted on the minions by the Salt master to set the
nodes in some state.

Here, the distributed deployment is planned so as to distribute the various functional
components of the implementation to avoid capacity bottlenecks and to have fault tolerance.

For example, elastic1 is part of the Elasticsearch cluster, and should in-
teract with elastic2 and elastic3. We look closer at the salt files involved
in applying the top.sls state to elastic1. These files are cloud-data-

platform/dep-openstack/salt/common/java.sls, cloud-data-platform/dep-

openstack/salt/common/http_transport.sls, cloud-data-platform/dep-

openstack/salt/elastic/install.sls, and cloud-data-platform/dep-

openstack/salt/elastic/createindices.sls.
We can look at cloud-data-platform/src/dep-openstack/elastic/install.sls,

shown in Listing 6.3.12.

Listing 6.3.12: Elasticsearch installation Salt file for local multiple-VM-node deploy-
ment, cloud-data-platform/src/dep-openstack/salt/elastic/install.sls.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

Here we see that the prepared Elasticsearch configuration elasticssearch.yml shown
in Listing 6.3.13 is copied from the repository to elastic1.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 70

Listing 6.3.13: Elasticsearch configuration file for local
multiple-VM-node deployment, cloud-data-platform/src/dep-

openstack/salt/configs/elasticsearch/elasticsearch.yml.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

Note that elasticssearch.yml uses Jinja notation to reference constants
stored as Pillar data on the Salt Master. The IPs of the elastic1,
elastic2, and elastic3 nodes are pre-defined and stored in cloud-data-

platform/src/dep-openstack/pillar/settings_local.sls, which is accessed via
cloud-data-platform/src/dep-openstack/pillar/top.sls. Note also that the
pillar referenced with Jinja notation, e.g. \{\{ pillar[’elastic1’] \}\}, is put into a
default directory on the Salt master node by Vagrantfile by the line c.vm.synced_folder
"pillar/", "/srv/pillar".

Pillar thus is used to enable access to information that is not otherwise available to the
Salt minion. In programming terms, Pillar enables the Salt master to hold and securely
broadcast global variables to the minion nodes.

The above example illustrates the sequential steps and great reliance on dependencies
in the SaltStack distributed deployment. This makes for a powerful but sensitive deploy-
ment tool. Likewise, the cloud-data-platform/src/dep-openstack/salt/top.sls file
targets the other nodes with specific deployments in the same way, although the details
vary.

6.3.2.2 Operations to enact the deployment

In the system where Vagrant is installed, the multi-node deployment can be done by going
to the location of the above Vagrantfile and entering the commands shown in Listing 6.3.14
in the command prompt.

Listing 6.3.14: Commands to enact local multiple-VM-node deployment.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

Note that the provision of VMs is taken care of by Vagrantfile in this case, but the
distributed deployment of the module implementation happens with an extra step, where
the user must manually access the Salt master node and call /srv/salt/top.sls by the
command
$ sudo salt ’*’ state.apply.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 71

6.3.2.3 Notes on context

In practice, the multiple node deployment is similar to single node deployment, with the
primary exception being the need for nodes to be aware of and interact with each other.
This challenge can be addressed with the approach of setting the necessary relational
configurations as references to Pillar.

Obviously, the variety of nodes dedicated to distinct functions proliferates the number
of dedicated salt state files that need to be defined. However, besides managing complex
cross-references, this represents only a quantitative increase in the labour required to
define the overall cluster deployment state.

To make a simplified summary of dependencies between functional components in the
distributed deployment, we note that:
An Elasticsearch node requires a link to the other Elasticsearch nodes, as specified in
elasticsearch.yml. Logstash nodes needs links to the Elasticsearch cluster and the
Kafka cluster. Kafka nodes need links to the Zookeeper cluster. Finally, Acq nodes need
links to the Kafka cluster.

Note that this version of deploying a distributed implementation to a virtual cluster
provisioned by Vagrant may not be functional or practical due to the scale of the distribution
described. However, this section is intended to describe the principle of a distributed
deployment. This distributed deployment has been proven in the case of VMs provisioned
by OpenStack, as described in Sec 6.4.2. Future development may specify a distributed
implementation on a scale feasible in Vagrant.

6.4 Deployments to cloud (Cloud virtual machine en-

vironment with OpenStack)

Whereas Vagrant in combination with VirtualBox enabled the provisioning of VMs on a
local machine, OpenStack enables the provisioning of VMs in a cloud environment. Since
the cloud environment has access to a greater pool of hardware resources, this makes the
cloud environment more suited to distributed deployment. Nevertheless, we first describe
the single node deployment on a cloud computing platform in Sec. 6.4.1 before discussing
the distributed deployment in Sec. 6.4.2.

Note that the steps analogous to those automated by the recipe in a Vagrantfile will, for
the cloud environment deployments, partly be described as OpenStack GUI operations in
Sec. 6.4.1.2.1, and partly be described as CLI operations in Sec. 6.4.1.2. This can be seen
as an instructive illustration and explanation of the process that is otherwise automated.
In Sec. 6.4.2, an automation process analogous to Vagrant is described for the distributed
deployment to a cloud environment.

6.4.1 Deployment to single VM on cloud

This section describes a single node deployment of the module implementation to a virtual
machine hosted on cloud computing platform. The virtual machine that will receive the
deployment should have a minimum of 4 GB memory, 10 GB storage, and 4 vCPUs.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 72

Figure 6.3: Provisioning single VM node on OpenStack.

6.4.1.1 Key files

The files used for deploying the module implementation to a single Virtual Machine on a
cloud computing platform are largely the same as in the Vagrant case, in Sec. 6.3.1.

The file cloud-data-platform/src/dep/salt/prepare.sh, shown in Listing 6.4.1, is
used to copy Salt files and configurations from the cloned repository on the local VM to
the default locations expected by the Salt programs.

Listing 6.4.1: Bash file for preparing single VM-node deployment on cloud, cloud-
data-platform/src/dep/salt/prepare.sh.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

6.4.1.2 Operations to enact the deployment

Before the deployment process itself can be executed, an appropriate target for the
deployment must be provisioned. This provisioning is explained in Sec. 6.4.1.2.1 before
the deployment to the resulting VM is described in Sec. 6.4.1.2.2.

6.4.1.2.1 GUI operations

OpenStack Dashboard GUI is used to provision the single VM for this deployment.
Click Launch Instance and follow the dialog box to specify the details of the VM to
be instantiated. The virtual machines that will receive the deployment should have a
minimum of 4 GB memory, 10 GB storage, and 4 vCPUs.

To deploy the cloud data platform on the cloud computing platform, first the necessary
virtual machines must be provisioned. The multiple node deployment requires multiple
VMs, but the steps for each VM are essentially the same as in Sec. 6.4.1.2.1, although the
details vary for each type of VM depending on its intended purpose in the overall virtual
cluster.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 73

6.4.1.2.2 CLI operations

The following commands will deploy the module implementation on a virtual machine.
Remember to SSH into the VM in question first, with a SUDOer user.

Make sure that the VM hostname is set appropriately in the local file /etc/hosts so
that the first line looks as shown:

127.0.0.1 localhost cdp-single

Here the cdp-single is the name of the example VM used throughout this section.
cdp-single is the hostname of the VM set in the cloud computing platform interface
when provisioning the VM.

Next, install Salt master and minion on the VM with the CLI operations as shown in
Listing 6.4.2.

Listing 6.4.2: Commands to enact single-VM-node deployment on cloud.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

Now, establish a link between Salt master and Salt minion by editing the local file:
/etc/salt/minion and uncommenting and modifying the variable master. Check the
default value by the following command, and look at the first line returned as shown in
Listing 6.4.3.

Listing 6.4.3: Check Salt minion configuration file for single-VM-node deployment
on cloud.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

Modify /etc/salt/minion with an editor like Vi or Nano so that repeating the above
command gives the following result as shown in Listing 6.4.4.

Listing 6.4.4: Edit Salt minion configuration file to link with Salt master for single-
VM-node deployment on cloud.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

To make the Salt minion service take into account the above edit and recognize the
localhost as the Salt master, enter the following command:

ubuntu@cdp-single:~$ sudo service salt-minion restart

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 74

The command shown in Listing 6.4.5 returns the state of acceptance of Salt minion
SSH public keys submitted to the Salt master.

Listing 6.4.5: Check Salt minion status for single-VM-node deployment on cloud.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

As seen in the response to the above command, the cdp-single Salt minion keys have
not been accepted by the Salt master.

To accept the cdp-single key, run this command:

ubuntu@cdp-single:~$ sudo salt-key -a "cdp-single"

Note that, in the case of multiple Salt minion keys pending acceptance, the command
$ sudo salt-key -A would accept all pending keys.

Test that communcation is established between the Salt minion and the Salt master
by running the command shown in Listing 6.4.6 and ignoring any warnings raised.

Listing 6.4.6: Verify Salt minion status for single-VM-node deployment on cloud.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

The response to the command should be as above. Note that the sudo salt part of
the command instructs the Salt master to address its cluster of Salt minions. Given the
’*’ term, all connected Salt minions should respond.

Next, generate a SSH key pair with blank password and store it in the default file
’~/home/ubuntu/.ssh/id_rsa’, where ubuntu is the username of the relevant SUDOer
on the VM. Use the command shown in Listing 6.4.7.

Listing 6.4.7: Generate SSH key for single-VM-node deployment on cloud.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

This key will be used to clone the cloud-data-platform repository.
Logging in on www.gitlab.com, click on the triangulum/cloud-data-platform

project, then on the left-hand menu on “Settings”. This will drop down a further menu.
Click “Repository”. Scroll down on the resulting page to a section titled“Deploy Keys”
and click the button labelled “Expand”.

Under “Create a new deploy key for this project”, enter as title the VM name. In this
example, “cdp-single”.

GRANT AGREEMENT No. 646578

www.gitlab.com

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 75

Copy the contents of /home/ubuntu/.ssh/id_rsa.pub into the field “Key” under the
same heading. Click “Add Key”. (Write access should be assigned only sparingly to keys.)

Now, clone the repository to the VM using the following command:

ubuntu@cdp-single:~$

git clone git@gitlab.com:triangulum-cdp/cloud-data-platform.git

Now, prepare the node before Salt deployment with a Bash script that will copy the
necessary files to /srv/salt/:

ubuntu@cdp-single:~$ cd cloud-data-platform/src/dep/salt/

ubuntu@cdp-single:

~/cloud-data-platform/src/dep/salt$ sudo ./prepare.sh

The prepare.sh file is discussed in Sec. 6.4.1.1.
Finally, deploy the module implementation using Salt by the following commands:

ubuntu@cdp-single:~/cloud-data-platform/src/dep/salt$

cd /srv/salt/

ubuntu@cdp-single:/srv/salt$ sudo salt ’*’ state.apply -t 600

There may be a problem with the previous command, in which case the response lists
in the summary a non-zero number of failed states. Scrolling up through the more verbose
parts of the response, the particular failures may be troubleshot.

If the installation of the package cdpadaptor has failed, but the repository has been
cloned locally, the following commands can fix the deployment:

ubuntu@cdp-single:/srv/salt$ cd /home/ubuntu/cddadaptor

ubuntu@cdp-single:~/cddadaptor$ sudo -H pip3 install .

Check that the cdpadaptor package was installed with this command:

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 76

Information about cdpadaptor python package

ubuntu@cdp-single:~/cddadaptor$ pip3 show cdpadaptor

Metadata-Version: 1.1

Name: cdpadaptor

Version: 0.0.0

Summary: Superclasses for adaptors used in the

Cloud Data Platform to acquire data

and forward it to Kafka.

Home-page: UNKNOWN

Author: UNKNOWN

Author-email: UNKNOWN

License: UNKNOWN

Location: /usr/local/lib/python3.5/dist-packages

Requires: kafka, prompt-toolkit, PyYAML

Classifiers:

Programming Language :: Python

Programming Language :: Python :: 3.6

Programming Language :: Python :: Implementation::CPython

Now, re-apply the Salt state. The same failure may be reported, but the dependencies
will be satisfied with the above fix:

ubuntu@cdp-single:~/cddadaptor$ sudo salt ’*’ state.apply -t 600

The various components of the module implementation should now be up and running.
The various services can be checked with commands such as:

$ sudo systemctl status elasticsearch.service

The system should now be running, a python process running the
kolumbus_vm_client_tcp.py collects data from the Kolumbus VM (Vehicle Monitor-
ing) interface once every 60 seconds, this starts automatically when state.apply is run.
This data is passed to the systemd service logstash, which preprocesses the data and store
it to the systemd service elasticsearch. The systemd process kibana exposes the Kibana
web interface for data visualisation and exploration though port 8080. If the VM setup
forwards some port to 8080 on the guest machine the Kibana interface will be available
from a browser on the host machine.

6.4.1.3 Notes on context

Deployment to a single node on cloud is the production version of single node deployment
using Vagrant, as described in Sec. 6.3.1. The differences lie in how to create a virtual
machine and how to bootstrap SaltStack. Once Salt master and Salt minion are sorted
out, the rest of the deployment procedure is very much the same as with Vagrant.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 77

6.4.2 Deployment to multiple VMs on cloud

This section describes a multiple node deployment of the module implementation to a set
of virtual machines hosted on cloud computing platform. The VMs to host the various
components may have different performance requirements depending on the functions of
the hosted components.

Figure 6.4: Provisioning multiple VMs node on OpenStack.

6.4.2.1 Key files

The files used for deploying the module implementation to multiple virtual machines on a
cloud computing platform are largely the same as in the multiple virtual machines with
Vagrant case, in Sec. 6.3.2.

The prose descriptions in this subsection will use file paths relative to the repository
directory cloud-data-platform/src/dep-openstack, since this directory contains all
the necessary files for the deployment to multiple nodes provisioned on a cloud computing
platform. For example, this subsection may discuss the files salt/top.sls, and in all
prose descriptions, such paths will be given relative to cloud-data-platform/src/dep-

openstack. This is done both for brevity and clarity.
The “Quick Start” guide to deploying this deployment scheme is described in

cloud-data-platform/src/dep-openstack/Readme.md.
In the case of multiple virtual machines using Vagrant (in Sec. 6.3.2), the virtual

machines are created programmatically according to the Vagrantfile. The analogous
operations of creating virtual machines on the cloud computing platform is done using the
OpenStack Dashboard GUI. During the creation process of virtual machines, it is possible
to include a Bash script that will be executed when the virtual machine boots for the
first time. In this deployment scheme, the script will either set up a Salt master node
using the script master.sh shown in Listing 6.4.8, or a Salt minion node using the script
uis-init-minion.sh shown in Listing 6.4.9. The process of installing Salt master must
be executed for at least one virtual machine with the hostname salt-master. In contrast,
the process of installing salt-minion must be executed for every virtual machine on the
cluster – 16 in the present case.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 78

Listing 6.4.8: Bash file for installing Salt master for multiple-VM-node deployment
on cloud, cloud-data-platform/src/dep-openstack/cloudInit/master.sh.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

Listing 6.4.9: Bash file for installing Salt minion for multiple-VM-node de-
ployment on cloud, cloud-data-platform/src/dep-openstack/cloudInit/uis-
init-minion.sh.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

As a result, the created virtual machines will have the minimum required software
packages, making it ready to join the deployment cluster of salt-master.

In addition, it is important to have the file cloud-data-platform/src/dep-

openstack/pillar/settingscloud.sls consistent with the virtual machine instances.
This file is basically a mapping between an instance of CPD architecture and a set of
salt-minion instances.

For example, if a VM with ip:192.168.1.51 exists as a salt-minion, and you want
that virtual machine to act as one of the kafka nodes, say kafka1, then you have to make
sure that the key kafka1: in cloud-data-platform/src/settingscloud.sls as shown
in Listing 6.4.10 gets the right ip (kafka1: 192.168.1.51).

Listing 6.4.10: IPs for subclusters and software versions are set in cloud-data-

platform/src/dep-openstack/pillar/settingscloud.sls.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

6.4.2.2 Operations to enact the deployment

Before the deployment process itself can be executed, the appropriate targets for the
deployment must be provisioned. Using the OpenStack GUI on CCP, provision the
appropriate number of VMs and make sure the associated computing and network resource
capacities are adequate. Also, make sure the intended target IPs of the newly provisioned
VMs match those indicated in the settingscloud.sls shown in Listing 6.4.10. This may
be best done by editing the file after provisioning the target VMs and reading off the IPs
provided by OpenStack.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 79

Having accomplished the VM provisioning above, proceed to install salt minion and
master on the appropriate VMs, clone the cloud-data-platform repository to each VM,
and then:

1. ssh into salt-master.

2. List minions: sudo salt-key --list-all.

3. Accept the salt-minions: sudo salt-key --list-all.

4. Check that the file settingscloud.sls is consistent with the salt-minions.

5. Clone the git repository: see Sec. 6.4.1.2.

6. Run the script under cloud-data-platform/src/dep-

openstack/salt/prepare.sh.

7. Run sudo salt ’*’ state.apply -t 600.

8. From OpenStack GUI associate a floating ip to Kibana node.

9. Open a web-browser and navigate to (Kibana node IP):(port).

10. The cloud data platform’s accumulating data collection can then be seen via the
Kibana GUI.

6.4.2.3 Notes on context

Deploying CDP cluster on OpenStack is the production prototype analog of multiple VMs
using Vagrant. The differences from a software development perspective are mainly on how
to create, provision and connect to the virtual machines. The SaltStack part is exactly
the same.

To take advantage of the data processing framework beyond, additional VMs should
be provisioned and the deployment under cloud-data-platform/src/jupyspark should
be enacted on the additional VMs to form a combined JupyterHub and Spark cluster.
This is not appropriate unless the cloud environment can provision additional VMs
fully independent from the multiple-node data collection framework deployed based on
cloud-data-platform/src/dep-openstack or a similar deployment.

Based on the ample examples provided by the above code and command listings,
the cloud-data-platform/src/jupyspark deployment should be relatively simple,
running first a Bash file cloud-data-platform/src/jupyspark/salt/prepare.sh

and then applying the usual salt state as coordinated via cloud-data-

platform/src/jupyspark/salt/top.sls. Note that minor configuration updates
may be necessary, depending on VMs provisioning, to correctly reflect the nodes’ local
hostnames and IPs.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 80

6.5 Alternative deployment schemes

This section discusses necessary considerations for making custom deployment schemes for
the module implementation.

Note that Sec. 6.4.2 describes a particular deployment scheme on a pre-defined set of
VMs. That deployment scheme represents a reasonable distributed deployment within
some arbitrary resource restrictions. Such restrictions are reasonable from a economic
perspective, i.e. to promote efficient resource use in the development of the deployment
scheme.

However, alternative deployment schemes on a cloud computing platform should be
informed by the available resource pool. Resource availability may vary greatly, although
it should be determined and fixed before the deployment scheme development begins.
Most importantly, the resource pool should not shrink below what the deployment scheme
is developed to require.

Future developments of the implementation and associated deployment schemes are
encouraged to take note of the division of labour exemplified in Sec. 6.4.2. Subsets of the
virtual cluster were dedicated to specific functions, typically ensuring fault-tolerance for
the function in question by distributing each function with multiple nodes. For example,
Elasticsearch was distributed to multiple dedicated nodes, with no overlap with the set of
multiple nodes dedicated to Kafka. These subsets of the overall virtual cluster, each of
which are dedicated to a specific function, can be called “functional groups.” Not only
does this ensure fault-tolerance within the functional group, but it isolates the different
functions of the module implementation from one another, preventing one function from
impinging on the resource requirements of another.

In principle, the various functional groups of the modules are separately scalable.
However, Sec. 6.3.2 and Sec. 6.4.2 describe multiple node deployments where the number
of nodes dedicated to each functional group is limited and pre-defined. The primary
challenges include planning an optimal allocation of available resources to the various
components in the module implementation, thus defining the size of the corresponding
functional groups, as well as updating the dependencies in configuration files that enable
coordination within and across functional groups.

Accordingly, an alternative deployment scheme can be established by a few simple
steps, starting with pillar/settingscloud.sls. We are here continuing the relative file
path convention in Sec. 6.4.2, i.e. refering to file paths in the repository that are relative to
cloud-data-platform/src/dep-openstack. First of all, edit the list of hostnames and
IPs so that the hostname consists of the name of the functional group and an integer in a
sequence, e.g. elastic2 for the second node in the Elasticsearch cluster. This enables
independently scaling up or down the different functional groups in the overall virtual
cluster. Second, make sure that the files that depend on the variables broadcast by Pillar
are updated to listen for the correct, new number of nodes in each functional group.

For example, the adaptors implemented with cdpadaptor rely on a file
/salt/configs/acq/kafka_brokers.json which is copied to a local file
/tmp/kafka_brokers.json on the VMs where the adaptors are deployed. The
contents are shown in Listing 6.5.1.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 81

Listing 6.5.1: Information to connect adaptor VMs to the Kafka cluster,
/tmp/kafka_brokers.json.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

This file (or its analog) must be updated to reflect changes made in
pillar/settingscloud.sls (or its analog) in an alternative deployment scheme.

Thus, if the new deployment should have four nodes in the Kafka functional group,
pillar/settingscloud.sls should contain a line below kafka3, for example as shown
in Listing 6.5.2.

Listing 6.5.2: Modifying a Pillar file for alternative deployment,
.../alternative/pillar/settingscloud.sls.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

Then, kafka_brokers.json should become modified as as shown in Listing 6.5.3.

Listing 6.5.3: Information to connect adaptor VMs to the modified Kafka cluster,
/tmp/kafka_brokers.json.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

The above example illustrates how to manipulate the existing multiple nodes deploy-
ment scheme under cloud-data-platform/src/dep-openstack to configure alternative
deployments. Note that a variety of files rely on the variables broadcast by Pillar based
on pillar/settingscloud.sls, and these files may need to be updated to reflect the
alterations desired.

6.5.1 Ideas for possible alternative deployment schemes

Note that data access could conceivably be supported as a separate functional group by
deploying the Elasticsearch cluster with some nodes dedicated to simply mirroring and
making available the stored data, while other Elasticsearch nodes would be dedicated to
storing the data incoming from data ingest nodes.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 82

Chapter 7

Replication Guide

7.1 Overview

The purpose of this chapter is to advise technical personnel who may wish to replicate the
UiS module implementation in their own allocation environment. As practical guidance,
the chapter is intended to be comparatively short and easy to navigate, with references to
more dense material in earlier chapters. Replication may certainly involve modification
of the module implementation described in this report, and this is hopefully encouraged
by the documentation represented by Chapters 2 through 6, but initially it may be
informative and useful to simply deploy the solutions as presented to gain familiarity with
the components and their relationships.

Sections 7.2 through 7.4 qualitatively discuss different scenarios that may be relevant
for replicating parties in Follower Cities or elsewhere.

Note that to gain access to the repository before it is made public, contact Triangu-
lum researchers at UiS, identifying yourself, asking for repository read-access, provide
credentials as a consortium member representative or an appropriate representative of the
EU commission services, and the public key of the machine to which a repository copy is
desired. To get a public key with a Linux machine, follow the instructions in Sec. 6.4.1.2.2,
particularly those shown in Listing 6.4.7.

7.2 Demo implementation with vagrant and single

node

If the organization is not already committed to replicating the UiS module implementation,
it may be reasonable to take the time to become practically familiar with the system on
a local virtual machine, as discussed in Sec. 6.3.1. This approach uses source code in
thecloud-data-platform/src/dep and cloud-data-platform/src/vagrant directories.
This should show how to deploy the data collection framework, and the Kibana part of
the data analytics toolkit.

This will enable those interested in replication to try out the solution with minimal
hardware before committing to a more serious investment in hardware infrastructure.
This will also enable technical personnel to get an idea of the practical possibilities

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 83

and requirements to give decision-makers a relevant overview before more resources are
dedicated to a fuller replication.

7.3 Distributed on hardware

An alternative or next step to the very simple deployment recommended in Sec. 7.2 is to
set up a distributed deployment on a cluster of physical machine, where the network and
computing resources are not virtualized. This is called “running on bare metal.” This
may again save on resource commitment, avoiding either the building of a data centre
and a cloud computing platform, such as CCP, but can provide real capacity beyond the
toy-replication of Sec. 7.2.

On the other hand, this deployment approach would require a more hands-on approach
to adapt the deployment configured under cloud-data-platform/src/dep and cloud-

data-platform/src/dep-openstack to the allocation environment represented by the
physical machines and network.

However, unlike the single local VM deployment described in the previous section,
deploying to a physical cluster would potentially mean that the part of the data process-
ing framework/data analytics toolkit configured in the source code under cloud-data-

platform/src/jupyspark could be deployed as well. Deploying jupyspark to a single
machine, especially a single virtual machine, will not give any great advantage over simply
installing a single instance of Apache Spark and Jupyter Notebook locally. However,
with multiple machines, the power of distributed computing can be harnessed, and the
jupyspark source code facilitates such deployment.

7.4 Cloud hosted

Finally, a full deployment of cloud-data-platform/src/dep-openstack and jupyspark

can be achieved if the allocation environment is a cloud computing platform with adequate
resources. This is in principle almost as simple to do as Sec. 7.2, once the provisioning of
VMs is done, and the correct IPs are configured as discussed in Sec. 6.5.

However, the configuration of the various component clusters should be adapted to
the requirements of the module replication, and must be undertaken as an iterative
development by the replicating organization. Note that commercial cloud hosting services
may be appropriate, but this depends on the requirements of the replicating party. Scalable
costs and legal liabilities with respect to hosting data remotely should be considered before
choosing such an option.

An intermediate option is to deploy the cloud data platform to a single VM on the
cloud, as opposed to on a VM provisioned locally as discussed in Sec. 7.2. However, if the
local deployment has been undertaken, and cloud deployment is well understood, this is
not a necessary step pedagogically speaking.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 84

7.5 New data sources, new adaptors

Since a replication of the UiS module implementation by Follower Cities or others will
not require collecting data from the same data sources as module 544 cloud data platform
supporting WP2 impact reporting, the replication will require new data sources, and
therefore new adaptors, to be useful. To generate each new adaptor, the cloud-data-

platform/generator/cdpadgenerator.py script can be used after installing cdpadaptor

package for Python.
Ensure that the machine’s public key is a deploy key at the cdpadaptor repository.

Next clone the git repository to some local directory, then use the pip package management
tool to install the package and make it available system wide, as shown in Listing 7.5.1.

Listing 7.5.1: CLI commands to install cdpadaptor.

$ git clone git@gitlab.com:triangulum -cdp/cdpadaptor.git

$ cd cdpadaptor

$ sudo -H pip3 install .

The new adaptor can then be generated with cloud-data-

platform/generator/cdpadgenerator.py. This generates the adaptor Python
script, Systemd service (and timer if appropriate), Logstash pipeline configuration files,
and Salt files. The data transfer methods for the data source need to be well understood
to do this step correctly. The generated files then have to be appropriately added to a
deployment directory under cloud-data-platform/src/, pushed to a repository under
the replicating party’s control, and pulled by the machines which should deploy the new
adaptor using Salt. Make sure the Salt file generated for the adaptor is added to the
top.sls for the deployment in question. Finally, from the Salt master deploy the new
Salt state to the Salt cluster.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 85

Chapter 8

Data analytics use case: Traffic flow
analysis

As part of the UiS module implementation, an exemplary application of the module
542 data analytics toolkit, or use case, was commenced. The implementation of the
data processing framework included both Kibana and JupyterHub with Spark, via the
jupyspark deployment on CCP. This chapter provides a brief summary of this effort as it
currently stands.

In mathematics and civil engineering, traffic flow is the study of interactions between
travellers (including pedestrians, cyclists, drivers and their vehicles) and infrastructure
(including highways, and traffic control devices), with the aim of understanding and
developing an optimal transport network with efficient movement of traffic and minimal
traffic congestion problems.

In this case study, the ultimate intention is to create analytics on traffic flow in
Stavanger and the surrounding region in Rogaland county. In particular, Triangulum
consortium member Kolumbus has been providing open data on bus transport, which has
been collected by the data collection framework in the cloud data platform. This data has
subsequently been made available to the data processing framework. The intention of the
use case analysis effort is to explore the data, to understand its underlying structures, and
to make predictive models on when busses arrive at bus stops while in service.

Ultimately, it may be possible to run the predictive model as a public service, providing
bus arrival time prognoses with better accuracy than the current prognosis system. Second,
perhaps insights from this effort can help optimize route planning for Kolumbus and
members of the public using private transport.

For this use case, the primary data source type was the Kolumbus real time open
data, which is standardized with the Service Interface for Real Time Information (SIRI)
protocol.

To infer the structure of the traffic network from the data source is a natural first step,
as this should provide a static background for the dynamics of vehicles moving through
space and time. Furthermore, it is noted that the data source implicitly assumes a graph
structure in its traffic network, and mapping this may be powerfully enabling to subsequent
steps.

The SIRI VM (vehicle monitoring) data source for Kolumbus was the most consistently

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 86

available and informative data source for the purposes of the use case. Crucially, the
Kolumbus VM data specifies GPS positions together with timestamps, as well as the
status of a monitored bus with respect to the bus route or line the the bus is serving at
the time. This data also includes which bus stop the bus is currently approaching.

To model a bus network using graph theory, we can build a graph where the vertices
represent bus stops. Then the edges of the graph represent paths taken by busses that
connect the bus stops as nearest neighbours on a given bus route. Mathematically, the
traffic network can then be represented by an adjacency matrix. In the simplest case, the
adjacency matrix would represent the nearest neighbour bus stops as a 1 in the matrix
where the bus stops are represented as the row and column number. The adjacency
matrix is sparse, and thus all other elements are 0. Thus, the adjacency matrix would be
symmetric.

However, the matrix elements representing the edges of the traffic network graph model
could be weighted in some way to reflect properties of the traffic network being modelled.
For example, the density of traffic flow could be represented by giving the adjacency
matrix elements variable scalar values. In this formulation, the adjacency matrix is not
guaranteed to be symmetric. Another weighting of the adjacency matrix elements could
be the distance between the bus stops, or (some statistical aggregate of) the distance
travelled by busses between the two stops. Since roads are not straight lines, the latter
category is highly relevant.

Other graph theoretic properties are also interesting to explore, such as total traffic
inflow/outflow for each bus stop, centrality of the bus stops in the network.

We can define a network (graph) as a system of nodes (vertices), with links (edges)
belonging to a single modal type. In this definition, a node, like a bus stop, is a location
on a transportation route that has capacity to generate traffic flow, while a link, like a
road, is a connection between two nodes along which flow occurs.

8.1 Implementation of the graph

To create the graph of buses, it was necessary to discover the main elements of the graph
from the data source including vertices (bus stops) and edges (roads or paths between
nearest neighbour bus stops). Both the vertices and edges of the graph could not be directly
read from the Kolumbus VM data. However, http://sanntidsappservice-web-prod.
azurewebsites.net/busstops provided an overview of the bus stop names, their numer-
ical identifiers in the SIRI protocol as implemented by Kolumbus across their multiple
monitoring services, and the nominal GPS position of each bus stop.

Given the time series data with minute-by-minute position histories for each bus (when
monitored, which was often not the case in the data set), it was clearly feasible to parse
out the subset of history that traced the path of a given bus traversing a given route, and
hence infer the sequence of bus stops on that route. At this stage, the nominal route was
not a priority compared to developing the ability to discover the empirical route taken by
a bus.

To develop this approach, the next step was to separate out a workable subset of the
bus network based on a single bus line, which could be served by multiple buses.

GRANT AGREEMENT No. 646578

http://sanntidsappservice-web-prod.azurewebsites.net/busstops
http://sanntidsappservice-web-prod.azurewebsites.net/busstops

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 87

8.2 Technical steps in preparing the analysis

On a Jupyter Notebook session provided by JupyterHub, with a PySpark session kernel,
we imported required packages from PySpark and PySpark.sql to read data with the
format of Spark abstractions like RDDs (Resilient Distributed Dataset) and DataFrames,
respectively.

As the Kolumbus VM data is indexed and stored in an Elasticsearch cluster in the
data collection framework, the data could be read via the Elasticsearch-Hadoop connector
deployed along with the rest of the jupyspark deployment.

To work only with the relevant subset of the bus network, the Elasticsearch query
used to extract data from storage was confined to a single LineRef value in the Kolumbus
VM data set. The query also filtered out the data points (indexed documents) where the
vehicles (buses) in question had for any reason not been monitored at the time of the
data point. The query furthermore filtered out data points lacking the bus stop code (
StopPointRef) identifying the next stop for the bus on its current trip. Finally, the query
filtered out the data points the bus stop code (OriginRef) of the origin terminal of the
current trip.

Having extracted this tractable subset of the data and loaded it to an RDD, the next
step was to create from it a DataFrame, to support more convenient operations on the
data subset. The read data from Elasticsearch is first read as a pySpark RDD, containing
Row objects. Each object includes a unique identifier of the record generated by the
indexing in Elastiscearch, and a series of information about the bus status and positioning.
These two parts are formatted in a tuple with string and nested dictionary data types,
respectively. A list of these tuples forms the whole RDD.

In order to make a DataFrame out of this RDD object, we can use Spark SQL. Spark
SQL can convert an RDD of Row objects to a DataFrame, inferring the data types. In
this way, rows are constructed by passing a list of key/value pairs as key-word arguments
to the Row class. The keys of this list define the column names of the table, and the types
are inferred by sampling the whole dataset.

On the other hand, when a list of key-word arguments cannot be defined directly ahead
of time, as in the present case, where there is a list of tuples including nested dictionaries,
a DataFrame can be created programmatically with three steps.

1. Create an RDD of lists (or tuples) from the original RDD; for this purpose, a function
was written to read the data in the original format mentioned above and convert
it to an RDD in which each Row object contains only a flat dictionary, instead of
a nested one, with all the information of the read tuple in the format of keys and
values. The keys would be the column names and values would be the column values
in that row.

2. Create the schema represented by a StructType matching the structure of lists in
the RDD created in step 1.

3. Apply the schema to the RDD via createDataFrame method provided by SparkSession
object.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 88

In the second approach that was used to create a DataFrame, the schema is already
available, thus the process of creating the DataFrame was simplified, compared to the first
approach where data types (schema) are inferred by sampling the whole data set.

8.2.1 Transformations on time-related DataFrame columns

Having extracted relevant data and transformed it to an amenable data structure, the
DataFrame was required to be ordered by time. Since the bus trips occur in a sequence of
time, the sequence of positions occupied by the bus on a trip depend on time ordering.
Several columns in the DataFrame included time information about data, such as scheduled
and expected departure times from the origin terminal stop or similarly expected and
scheduled arrival time to the destination terminal stop of a bus trip.

The values of such columns had first been coded with string data type, which cannot
be programmatically ordered or filtered based on time, and hence needed to be converted
to valid datatypes for this purpose, such as timestamp or datetime.

To solve this issue, a function was defined which converts variables with string data
type to variables with datetime type and assigns them to new columns in the DataFrame.
These new columns can be defined with similar names to the original columns, but once
the type conversion is found reliable, it is more convenient and less confusing to drop from
the DataFrame columns with time data in string type.

8.3 Defining and running an algorithm to find the

vertices and edges of the subgraph

To make the intended a graph, an algorithm was defined which can iterate through all the
journeys that buses associated with the selected line reference have experienced during
the period constrained by the data collection implementation. This period, which lasts
about two years, corresponds to the time when the real time data from Kolumbus VM has
been collected to the data collection framework.

Each data point is primarily anchored in time by the field RecordedAtTime, and the
DataFrame was ordered along this column. The algorithm to infer the graph can be
summarized as follows:

1. Define a new DataFrame derived from the original DataFrame but with only the
columns that are of interest for recognizing the elements of the graph.

2. Filter out the records where there are None or Null values for the specified columns.
Columns that were important for data quality and should not be empty included
JourneyRef, OriginRef, and DestinationRef.

3. Duplicate records with the same values for both VehicleRef AND RecordedAtTime

should also be filtered out.

4. Add new columns to the new DataFrame and initialize these to 0, None or False.
These default values can subsequently be overriden by the inferring algorithm. These

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 89

new columns with values to be inferred later included “PreviousBusStop”, “Stop
counter”, and “Edge”, the latter of which should consist of a tuple of the previous
and next bus stop codes.

5. Iterate through each journey that has occurred in the specified bus line. At each
journey each record (observation) should be compared with the previous record in
terms of some fields (columns) like the StopPointRef field representing the stop
code for the next upcoming bus stop on the current bus trip.

By iterating through the chronological sequence of records within a given bus journey
history, a number of edges between nearest-neighbour bus stops can be inferred. This
set of edges can subsequently be mapped to an adjacency matrix. This shows how the
same process can be undertaken for all the LineRef values in the data set, to build up a
comprehensive adjacency matrix for the underlying graph of the traffic network.

8.4 Summary of Analytics Use Case

Subsequent analysis efforts have been started using geopy.distance and pandas dataframe.
To take full advantage of the distributed computing, the execution of inferring an adjacency
matrix from the complete Kolumbus VM data set should likely be parallelized based on
the separate LineRef values.

The immediate challenge in the ongoing exploratory analysis of this use case consists in
developing various measures of the distance travelled by busses between nearest neighbour
bus stops. With geopy.distance, it is possible to calculate a geodesic distance (i.e. the
shortest path along a curvature model of the Earth) between GPS coordinates. While this
is unlikely to correspond reliably with the distance travelled by busses along the roads
connecting two nearest-neighbour bus stops, it is an interesting variable to keep track of,
as a basis for comparison.

Furthermore, the geodesic distance between different bus positions and the bus stops
the bus is moving between at any given time can help to characterize the distance
travelled along the road. Interestingly, the Kolumbus VM data model includes an element
called ProgressBetweenStops with sub-elements LinkDistance and Percentage. Here
LinkDistance is the number of meters travelled by the bus from the previous bus stop,
and Percentage reflects the corresponding percentage of progress along the edge of the
graph.

Thus, a Percentage of 100% represents the full distance of the edge, and consequently
the road distance the bus must travel between two nearest-neighbour bus stops. Some spot
checks were made to ensure that the 100% LinkDistance was consistent along a given
edge for all records with non-zero LinkDistance and Percentage values. This appears to
hold true.

However, the LinkDistance and LinkDistance values did not appear to consistently
reflect the geodesic distance between bus and the next bus stop, which makes sense since
the roads are not straight. It remains to be verified that the nominal LinkDistance values
for the edges on the graph consistently reflect the distance of the paths travelled by the
busses.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 90

As further data quality checks and refinements are made, as well as accumulating data,
it should be possible to accurately and precisely plot the paths taken by the busses on a
map, to better account for irregularities in a given bus trip in terms of the time taken or
the path taken. Together, these inferences begin to lay the foundation for improving upon
the commercial prognosis application currently used by Kolumbus to inform the public of
transport availability.

Furthermore, while the first challenge is to emulate the Kalman filter based solution
currently in use to establish a well-understood benchmark model, alternative machine
learning algorithms can be tested on the data set to generate competitive models, as well
as taking additional data sets, such as weather data, into account. Ultimately, robustness
to issues regarding data quality and data completeness is likely to be a key characteristic
of a competitive alternative machine learning algorithm for this use case.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 91

Chapter 9

Conclusion

The UiS module implementation has been presented in a fair level of detail, including the
motivating and constraining background provided by the Triangulum project itself and the
current state of the art in comparable projects. The rationale behind the overall system
architecture and the lower level design decisions has been presented to show the layers of
abstraction and separation of concerns. The details of implementation and deployment
have been presented to both give insight for direct replication, and to provide a basis for
further development. After a detailed presentation of the system as a whole, high-level
guidance was presented to make the arguments and facts already presented into a set
of plausible scenarios with recommended approaches for each. A use case for the data
analytics toolkit was described in its current state of development, including the remaining
open questions and the ambitions beyond the current point.

The module implementation as a whole has shown its applicability for a variety of
tasks within the Triangulum context, and beyond. While data collection and analysis
were accomplished within a big data paradigm, the experience of the development has
highlighted the challenge of communicating about data across domains of expertise, as
well as of clarifying the liabilities associated with data sharing between organizations to
lower the threshold enough do so. Finally, human resource allocation is a key challenge in
a comprehensive ICT development of the scope of the UiS module implementation.

Possible future directions of development in the UiS module implementation within
Triangulum may include various types of improvement.

For the sake of replication, a public code repository may be created that is clean of
details regarding consortium members and their modules. This would support replication
by not requiring registration to access a closed repository.

If a meaningful function can be defined, it may be interesting to create a read-only
dynamic visualization dashboard for modules or Lighthouse Cities. Note that a challenge
here is finding a way to combine data sets that is not merely contrived. Another challenge
in this regard is the shortage of real time data sources. While several modules can provide
time series data, very few can do so in real time, and generally the diverse data sources
may not be meaningfully related to one another.

The data analytics use case described in Chapter 8 can be developed further, and by
prioritzing this avenue of development, the data processing framework itself will inevitably
be further developed.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 92

Both for the visualization dashboard, for the bus arrival time prognosis service, and
for offering registered external uses controlled access to the data processing framework,
development of external access mechanisms would require additional developments.

Finally, the cloud data platform and its elements will require ongoing maintenance and
upgrades to continue functioning nominally in the constant technological evolution seen
by networked systems. Even re-design of certain components may become warranted as
the UiS module implementation continues supporting the impact reporting of WP2.

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 93

Glossary

agreement problem Also called Consensus problem, the problem of making multiple
distributed processes maintain some common state or to decide on a future action.
14, 15

big data A term for data that is quantitatively large in terms of volume, velocity, and
variety. 5, 11, 14, 28, 34

cloud computing A paradigm of ICT concerned with shared pools of computing resources
served over networks to remote clients. 14

dependable computing The field of study focussed on computing systems that can be
relied upon. 15

distributed computing A field of computer science concerned with distributed systems
that can perform coordinated functions. 14

fault tolerance The property of a system to tolerate failures and still continue to function
to some extent. 15

Python A popular programming language with broad support in the open source commu-
nity. 34, 39, 42, 44, 54, 57, 58, 83, 84

Triangulum An EU-funded Horizon 2020 project on smart cities. 5, 6, 10, 11, 14, 17, 18,
19, 20, 21, 23, 24, 26, 27, 28, 30, 34, 36, 38, 43, 82, 85, 91

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 94

Acronyms

API Application programming interface, the set of definitions that enable programmable
communication between software components.. 30, 34, 38, 39, 41, 42, 43, 44, 45, 46,
51, 57, 58

CCP The physical data centre and software environment for provisioning virtualized
resources for cloud computing applications at UiS. 11, 26, 27, 28, 33, 35, 37, 55, 60,
78, 83, 85

EU European Union. 5, 26, 82

GUI Graphical user interface. 38, 57

ICT information and communications technology. 5, 10, 14, 17

IoT Internet of Things. 10, 11, 14

IRIS International Research Institute of Stavanger. 6

SIRI Service Interface for Real Time Information, a protocol for monitoring public trans-
port. 85, 86

UiS University of Stavanger. 5, 6, 10, 11, 12, 14, 17, 22, 23, 24, 26, 27, 28, 30, 32, 33, 34,
36, 37, 38, 41, 43, 51, 52, 57, 82, 83, 85, 91, 92

vCPU Virtual central processing unit. 27, 71

VM Virtual machine. 27, 33, 37, 52, 56, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
76, 77, 78, 79, 80, 81, 83

GRANT AGREEMENT No. 646578

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 95

Bibliography

[1] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to Reliable and Secure
Distributed Programming, 2nd ed. Springer Publishing Company, Incorporated, 2011.

[2] L. Lamport, “Paxos made simple,” pp. 51–58, December 2001. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/

[3] The IEEE Technical Committee on Dependable Computing and Fault Tolerance
– IFIP Working Group 10.4 on Dependable Computing and Fault Tolerance.
Dependable computing and fault tolerance. Accessed: 2018-01-12. [Online]. Available:
http://www.dependability.org/

[4] Wikipedia, “Critical system — wikipedia, the free encyclopedia,” 2017, [Online;
accessed 6-December-2017]. [Online]. Available: https://en.wikipedia.org/w/index.
php?title=Critical system&oldid=790821273

[5] M. d’Aquin, A. Adamou, E. Daga, S. Liu, K. Thomas, and E. Motta, “Dealing
with diversity in a smart-city datahub,” in Proceedings of the Fifth International
Conference on Semantics for Smarter Cities - Volume 1280, ser. S4SC’14. Aachen,
Germany, Germany: CEUR-WS.org, 2014, pp. 68–82. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2878779.2878787

[6] S. Pirttikangas, E. Gilman, X. Su, T. Leppnen, A. Keskinarkaus, M. Rautiainen,
M. Pyykknen, and J. Riekki, “Experiences with smart city traffic pilot,” in 2016
IEEE International Conference on Big Data (Big Data), Dec 2016, pp. 1346–1352.

[7] N. Marz and J. Warren, Big Data: Principles and Best Practices of Scalable Realtime
Data Systems, 1st ed. Greenwich, CT, USA: Manning Publications Co., 2015.

[8] A. I. Maarala, M. Rautiainen, M. Salmi, S. Pirttikangas, and J. Riekki,
“Low latency analytics for streaming traffic data with apache spark,” in
2015 IEEE International Conference on Big Data, Big Data 2015, Santa Clara, CA,
USA, October 29 - November 1, 2015, 2015, pp. 2855–2858. [Online]. Available:
https://doi.org/10.1109/BigData.2015.7364101

[9] D. PUIU, P. Barnaghi, R. TÖNJES, D. Kumper, M. I. Ali, A. MILEO, J. Parreira,
M. Fischer, S. KOLOZALI, N. FARAJIDAVAR, F. Gao, T. IGGENA, T.-L. PHAM,
C.-S. NECHIFOR, D. PUSCHMANN, and J. FERNANDES, “Citypulse: Large scale
data analytics framework for smart cities,” IEEE Access, vol. 4, April 2016. [Online].
Available: http://epubs.surrey.ac.uk/810693/

GRANT AGREEMENT No. 646578

https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
http://www.dependability.org/
https://en.wikipedia.org/w/index.php?title=Critical_system&oldid=790821273
https://en.wikipedia.org/w/index.php?title=Critical_system&oldid=790821273
http://dl.acm.org/citation.cfm?id=2878779.2878787
https://doi.org/10.1109/BigData.2015.7364101
http://epubs.surrey.ac.uk/810693/

D2.2 Cloud data platform and Subtask 5.4.2 Data analytics toolkit 96

[10] B. Svingen. Publishing with apache kafka at the new york times.
Accessed: 2018-01-12. [Online]. Available: https://www.confluent.io/blog/
publishing-apache-kafka-new-york-times/

[11] F. Bachmann, L. Bass, P. Clements, D. Garlan, J. Ivers, M. Little, P. Merson, R. Nord,
and J. Stafford, Documenting Software Architectures: Views and Beyond, 2nd ed.
Addison-Wesley Professional, 2010.

[12] J. Kohlas and J. Pasquier, “Optimization of spare parts for hierarchically decomposable
systems,” vol. 8, pp. 294–300, 11 1981.

[13] J. Kreps, L. Corp, N. Narkhede, J. Rao, and L. Corp, “Kafka: a distributed
messaging system for log processing. netdb?11,” 2011. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.233.1726&rank=1

GRANT AGREEMENT No. 646578

https://www.confluent.io/blog/publishing-apache-kafka-new-york-times/
https://www.confluent.io/blog/publishing-apache-kafka-new-york-times/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.233.1726&rank=1

	Executive Summary
	Revision History
	Conventions
	Introduction
	Motivation and objectives
	Context and orientation
	Project-specific conditions

	Report overview
	Report structure
	Who should read this report?

	Review of literature and related works
	Distributed computing
	Fault Tolerance
	Distributed System Model
	Quorums

	ICT in other smart city projects
	MK:Smart
	Oulo smart city traffic pilot
	CityPulse

	Other relevant projects
	CKAN
	FIWARE
	New York Times and Apache Kafka

	Review Summary

	Architecture
	Architecture Roadmap
	Purpose and Scope
	Organization
	Stakeholder Representation
	Viewpoint Definitions
	Viewpoint defintion: Implementation units decomposition viewpoint

	Architecture Background
	Problem Background
	System Overview
	Goals and Context
	Significant Driving Requirements

	Solution Background
	Architectural Approaches
	Requirements Coverage

	View
	Implementation Units Decomposition View
	View Description
	Primary presentation
	Context diagram

	Architecture Summary

	Design
	Design overview
	Data Acquisition
	Adaptors
	Queueing and Load Balancing

	Data Ingestion
	Data Storage
	Data Access
	Internal Access
	External Access

	Data Processing
	Exploratory Data Analysis Tools
	Batch Processing Tools
	Modelling

	Design Summary

	Implementation
	Pipeline and Components Overview
	Implementation division 1: Data collection framework
	Data intake form
	Adaptors
	CDPAdaptor

	Queueing and load balancing
	Parameters affecting fault tolerance
	Logstash parameters relating to Kafka
	Load balancing the publishing adaptors
	Load balancing the subscribing Logstash nodes

	Data Ingestion
	Sanitizing
	Filtering

	Data Storage
	Indexing
	Object Storage
	Monitoring

	Data Access

	Implementation division 2: Data processing framework
	Exploratory Data Analysis Tools
	Batch Processing and Modelling Tools

	Implementation Summary

	Deployment
	Overview
	Methodology and technology
	Methodology
	Technologies

	Local virtual machine environment with Vagrant and Virtualbox
	Deployment to single VM locally
	Key files
	Operations to enact the deployment
	Notes on context

	Deployment to multiple VMs locally
	Key files
	Operations to enact the deployment
	Notes on context

	Deployments to cloud (Cloud virtual machine environment with OpenStack)
	Deployment to single VM on cloud
	Key files
	Operations to enact the deployment
	Notes on context

	Deployment to multiple VMs on cloud
	Key files
	Operations to enact the deployment
	Notes on context

	Alternative deployment schemes
	Ideas for possible alternative deployment schemes

	Replication Guide
	Overview
	Demo implementation with vagrant and single node
	Distributed on hardware
	Cloud hosted
	New data sources, new adaptors

	Data analytics use case: Traffic flow analysis
	Implementation of the graph
	Technical steps in preparing the analysis
	Transformations on time-related DataFrame columns

	Defining and running an algorithm to find the vertices and edges of the subgraph
	Summary of Analytics Use Case

	Conclusion
	Glossary
	Acronyms
	Bibliography

